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Abstract. It is well known that the classical Ascoli-Arzel theorem is powerful technique

to give a necessary and sufficient condition for investigating the relative compactness of a

family of abstract continuous functions, while it is limited to finite compact interval. In

this paper, we shall generalize the Ascoli-Arzel theorem on an infinite interval. As its appli-

cation, we investigate an initial value problem for impulsive fractional evolution equations

on infinite interval in the sense of Hilfer type, which is a generalization of both Riemann-

Liuoville and Caputo fractional derivatives. Our methods are based on the Hausdorff

theorem, classical generalized Ascoli-Arzel theorem, Schauder fixed point theorem,Wright

function, and Kuratowski measure of noncompactness.We obtain the existence of mild so-

lutions on an infinite interval when the semigroup is compact as well as noncompact.
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1 Introduction

Consider an initial value problem of impulsive fractional evolution equations
on infinite interval

(HDρ,ζ
0+Y)(t) = A Y(t) + G (t,Y(t)), t ∈ (0,∞).

∆Y|t=tk = Ik(Y(t−k )), k = 1, 2, 3, ...m,

(I
(1−ζ)(1−ρ)
0+ Y)(0) = ℘0 ∈ X,

(1.1)

where HDρ,ζ
0+ is the Hilfer fractional derivative of order ζ ∈ (0, 1) and of

type ρ ∈ [0, 1], Riemann-Liouville integral I
(1−ζ)(1−ρ)
0+ of order (1 − ζ)(1 −

ρ), operator A denotes the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators {T (t)}t≥0 in Banach space X,G :
[0,∞) × X → X is a continuous function, ℘0 is an element of X. ∆Y|t=tk


