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Abstract. This paper gives existence results for impulsive fractional semilinear differen-
tial inclusions with delay involving Caputo derivative in Banach spaces. We are concerned
with the case when the linear part generates a semigroup not necessarily compact, and the
multivalued function is upper semicontinuous and compact. The methods used throughout
the paper range over applications of Hausdorff measure of noncompactness, and multival-
ued fixed point theorems. Finally, we provide an example to clarify our results.
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1 Introduction

In this paper, we shall be concerned with the following impulsive differential
inclusion with nonlocal condition:

(Q)


cDαx(t) ∈ Ax(t) + F (t, τ(t)x), t ∈ J = [0, b], t 6= ti,

x(t+i ) = x(ti) + Ii(x(t−i )), i = 1, ...,m,

x(t) = ψ(t)− g(x), t ∈ [−r, 0],

where cDα is the Caputo derivative of order α, A : D(A) ⊆ E → E is the
infinitesimal generator of a C0−semigroup {T (t), t ≥ 0} on a real separable
Banach space E, F : J × Θ → 2E , ψ : [−r, 0] → E, 0 = t0 < t1 < · · · <
tm < tm+1 = b, for every i = 1, 2, ...,m, Ii : E → E impulsive functions
which characterize the jump of the solutions at impulse points, g : Λ → E,
is a function related to the nonlocal condition at the origin and x(t+i ), x(t−i )
are the right and left limits of x at the point ti respectively. Finally, for any
t ∈ J , τ(t) : Λ→ Θ defined by x(θ) = x(t+ θ), θ ∈ [−r, 0], x ∈ Λ. and Θ, Λ
will be specified later.

Impulsive differential equations and impulsive differential inclusions have
played a significant role in development of modeling impulsive problems in


