Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 28 (2021) 25-36 Copyright ©2021 Watam Press

http://www.watam.org

MODIFIED HYBRID SYNCHRONIZATION OF IDENTICAL FRACTIONAL HYPERCHAOTIC SYSTEMS WITH INCOMMENSURATE ORDER

Smail Kaouache^{1,2} and Toufik Bouden³

¹Department of Mathematics University of Mentouri, Constantine. Algeria

²Laboratory of Mathematics and their interactions Abdelhafid Boussouf University, Mila. Algeria.

> ³Department of Automatic University of Jijel. Algeria

Abstract. In this research work, we introduce a new approach for hybrid synchronization called modified hybrid synchronization (MHS). Specifically, we focus on the MHS of identical fractional hyperchaotic systems with incommensurate order, which is a mixture between complete synchronization, anti-synchronization, projective synchronization and modified projective synchronization. To start, we propose a novel hyperchaotic system and also we analyse some its dynamic behaviors. In addition, we prove the MHS approach for identical fractional-order hyperchaotic systems by using a suitable nonlinear controller and stability theory of fractional-order systems. Finally, we take our fractional system as an example to confirm the effectiveness of the analytical results.

Keywords. Hybrid synchronization, Hyperchaotic system, Caputo fractional derivative, Lyapunov exponents, Active control.

AMS (MOS) subject classification: 34A34, 35B35, 37C25, 37N30

1 Introduction

Dynamics of fractional-order nonlinear systems have become the focus in scientific research. They are more suited and better approach than the usual dynamics of integer-order systems for the description of nonlinear phenomena's memory in many fields of science and technology, such as diffusion modeling [1], viscoelasticity [2], control processing [3], signal transmission [4] and so forth.

Chaos synchronization of fractional-order chaotic systems is a fundamental concept of dynamical system and has applications in several fields of science, such as secure communication [5]. Different synchronization types have been proposed for chaotic systems, such as complete synchronization [6],