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Abstract. The aim of this paper is to correct (and extend) the formula for the solution

and the sufficient conditions for existence and uniqueness given in the paper ”Existence

results for a class of fractional order boundary value problems with integrable impulses”,

Dyn. Cont., Discr. Imp. Sys., Ser. A: Math. Anal., 25 (2018) 267-285. We will

consider both known approaches in the literature in the interpretation of solutions of

fractional equations with impulses i.e. the case of an unchangeable lower limit of the

Caputo fractional derivatives over the whole interval of study and the case of changed

lower limits at each time point of jump are both considered. We study both cases since

in the above cited paper it is not clear which one is used. The formula for solutions and

existence results are provided for both approaches in the literature to non-instantaneous

impulsive fractional differential equations.
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1. Statement of the problem

Let the points ti, si ∈ [0, 2π] : s0 = 0, tk+1 = 2π, 0 < ti < si < ti+1, i =
1, 2, . . . , k be given. Consider the space PC0 = C([−d, 0], X) endowed with
the norm ||y||PC0 = supt∈[−d,0]{||y(t)||X : y ∈ PC0}; here X is a Ba-

nach space. Let PC = PC1([−d, 2π], X) be a Banach space of all func-
tions y : [−d, 2π] → X which are continuously differentiable on [0, 2π] ex-
cept for a finite number of points ti ∈ (0, 2π) at which y(ti+), y′(ti+)


