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Abstract. In this paper, we discuss four–point boundary value problems for impulsive

second–order differential equations. We apply the Krasnoselskii’s fixed point theorem to

obtain sufficient conditions under which the impulsive second–order differential equations

have positive solutions. An example is added to illustrate theoretical results.
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1 Introduction

For J = [0, 1], let 0 = t0 < t1 < · · · < tm < tm+1 = 1. Put J ′ = (0, 1) \
{t1, t2, · · · , tm}. Put IR+ = [0,∞) and Jk = (tk, tk+1], k = 0, 1, · · · ,m −
1, Jm = (tm, tm+1).

Let us consider second–order impulsive differential equations of type




x′′(t) + λh(t)f(x(t)) = 0, t ∈ J ′,
∆x′(tk) = Qk(x(tk)), k = 1, 2, · · · ,m,

x(0) = γx(ξ), x(1) = βx(η), ξ, η ∈ (0, 1),
(1)

where as usually ∆x′(tk) = x′(t+k ) − x′(t−k ); x′(t+k ) and x′(t−k ) denote the
right and left limits of x′ at tk, respectively. Here, λ > 0 is a parameter and
γ, β > 0. Note that if ξ = η, then (1) reduces to a three–point problem.

We assume that:

A1 : f ∈ C(IR+, IR+), and there exist nonnegative constants in the extended
reals, f0, f∞, such that

f0 = lim
u→0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

;

h ∈ C(J, IR+) and h does not vanish identically on any subinterval;


