http://www.watam.org

POSITIVE SOLUTIONS TO BOUNDARY VALUE PROBLEMS FOR IMPULSIVE SECOND-ORDER DIFFERENTIAL EQUATIONS

Tadeusz Jankowski a and Robert Jankowski b

 $^a \rm Department$ of Differential Equations and Applied Mathematics, Gdansk University of Technology, 11/12 G.Narutowicz Str., 80–952 Gdansk, Poland

^bFaculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 G.Narutowicz Str., 80–952 Gdansk, Poland

Abstract. In this paper, we discuss four-point boundary value problems for impulsive second-order differential equations. We apply the Krasnoselskii's fixed point theorem to obtain sufficient conditions under which the impulsive second-order differential equations have positive solutions. An example is added to illustrate theoretical results.

Keywords. Impulsive differential equations; Four–point boundary value problems; Positive solutions.

AMS subject classifications: 34B10; 34A37.

1 Introduction

For J = [0, 1], let $0 = t_0 < t_1 < \cdots < t_m < t_{m+1} = 1$. Put $J' = (0, 1) \setminus \{t_1, t_2, \cdots, t_m\}$. Put $\mathbb{R}_+ = [0, \infty)$ and $J_k = (t_k, t_{k+1}]$, $k = 0, 1, \cdots, m - 1$, $J_m = (t_m, t_{m+1})$.

Let us consider second–order impulsive differential equations of type

$$\begin{cases} x''(t) + \lambda h(t) f(x(t)) = 0, \quad t \in J', \\ \Delta x'(t_k) = Q_k(x(t_k)), \quad k = 1, 2, \cdots, m, \\ x(0) = \gamma x(\xi), \quad x(1) = \beta x(\eta), \quad \xi, \eta \in (0, 1), \end{cases}$$
(1)

where as usually $\Delta x'(t_k) = x'(t_k^+) - x'(t_k^-)$; $x'(t_k^+)$ and $x'(t_k^-)$ denote the right and left limits of x' at t_k , respectively. Here, $\lambda > 0$ is a parameter and $\gamma, \beta > 0$. Note that if $\xi = \eta$, then (1) reduces to a three–point problem. We assume that:

 $A_1: f \in C(\mathbb{R}_+, \mathbb{R}_+)$, and there exist nonnegative constants in the extended reals, f_0, f_∞ , such that

$$f_0 = \lim_{u \to 0^+} \frac{f(u)}{u}, \quad f_\infty = \lim_{u \to \infty} \frac{f(u)}{u};$$

 $h \in C(J, \mathbb{R}_+)$ and h does not vanish identically on any subinterval;