HYPERCHAOTIC CHEN'S SYSTEM AND ITS GENERATION

Yuxia Li ${ }^{1,2}$, Kit-sang Tang ${ }^{3}$ and Guanrong Chen ${ }^{3}$ and and Xuecheng Su ${ }^{1}$
${ }^{1}$ College of Information and Electrical Engineering Shandong University of Science and Technology, Qingdao, 266510, P.R. China
${ }^{2}$ Electromechanical Engineering College
Guangdong University of Technology, Guangzhou, 510090, P.R. China
${ }^{3}$ Department of Electronic Engineering
City University of Hong Kong, Tat Chee Avenue, Kowloon

Abstract

This letter presents the finding of a new hyperchaotic generator, obtained by controlling a three-dimensional autonomous chaotic system - Chen's system - with a periodic driving signal, $\gamma \cos (\omega t)$. The existence of the hyperchaotic system is confirmed with bifurcation analysis. Keywords. Chaos, Chen's system, Hyperchaos. AMS (MOS) subject classification: 65P20; 34C28.

1 Introduction

Interest in studying hyperchaos generator has seen significant increase recently. A hyperchaotic attractor is usually characterized as a chaotic attractor with more than one positive Lyapunov exponent [1], implying that the dynamics expand in more than one direction, giving rise to "thicker" and "more complex" chaotic dynamics. Due to its increased degree of randomness and higher unpredictability [2], it is found to be useful for some nontraditional engineering and technological applications.

Hyperchaos was first reported by Rossler in 1979 [1]. Since then, some other hyperchaos generators have also been coined [3-8]. This letter presents a new hyperchaotic system, which is generated by driving a three-dimensional autonomous chaotic system - Chen's system $[9,10]$ - with a simple periodic forcing signal, $\gamma \cos (\omega t)$, where γ and ω are constant parameters. The existence of the hyperchaotic system is verified with bifurcation analysis.

2 Hyperchaotic Chen's System

The chaotic Chen's system was reported in [9], which can be described as follows:

