Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis **31 (2024)** 59-74 Copyright ©2024 Watam Press

http://www.watam.org

MULTIPOINT PROBLEM FOR SCHRÖDINGER TYPE EQUATIONS WITH GENERAL ELLIPTIC PART

Rishad Shahmurov¹ and Veli Shakhmurov^{2,3}

¹University of Alabama Tuscaloosa USA, AL 35487, E. Mail: shahmurov@gmail.com ²Antalya Bilim University, Dosemealti 07190 Antalya, Turkey, E-mail: veli.sahmurov@gmail.com,

³Azerbaijan State Economic University 194 Murtuz Mukhtarov AZ1001 Baku

Abstract. The existence, uniqueness, regularity properties and Strichartz type estimates for the solution of multipoint problem for linear and nonlinear Schrödinger equations with general elliptic leading part are obtained.

Key Word: Schrödinger equations, elliptic operators, local solutions, Strichartz type inequalities, regularity properties of PDE

AMS 2010: 35Q41, 35K15, 47B25, 47Dxx, 46E40

1 Introduction

Consider the multipoint problem for nonlinear Schrödinger equations (NLS)

$$i\partial_t u + Lu + F(u) = 0, \ x \in \mathbb{R}^n, \ t \in [0, T],$$
 (1.1)

$$u(0,x) = \varphi(x) + \sum_{k=1}^{m} \alpha_k u(\lambda_k, x), \text{ for a.e. } x \in \mathbb{R}^n,$$
(1.2)

where L is an elliptic operator defined by

$$Lu = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j}, \ a_{ij} \in \mathbb{R},$$
(1.3)

m is an integer, $\lambda_k \in (0, T]$, α_k are complex numbers, *F* is a nonlinear operator and u = u(t, x) is an unknown function.

Note that for $\alpha_1 = \alpha_2 = ... \alpha_m = 0$ the multipoint problem becomes usual Cauchy problem. If $F(u) = \lambda |u|^p u$ in (1.1) we get the multipoint problem nonlinear equation

$$i\partial_t u + Lu + \lambda |u|^p u = 0, \ x \in \mathbb{R}^n, \ t \in [0,T],$$
 (1.4)