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Abstract. In this article, we consider the following two-point discrete fractional boundary
value problem with constant coefficient associated with Dirichlet boundary conditions{

−
(
∇ν
ρ(a)

u
)
(t) + λu(t) = f(t, u(t)), t ∈ Nba+2,

u(a) = u(b) = 0,

where 1 < ν < 2, a, b ∈ R, with b − a ∈ N3, |λ| < 1, ∇ν
ρ(a)

u denotes the νth Riemann–

Liouville nabla difference of u based at ρ(a), and f : Nba+2 × R→ R+.

We make use of Avery–Peterson and Avery–Henderson fixed point theorems on suitable

cones and under appropriate conditions on the non-linear part of the difference equation

to establish sufficient requirements for at least two and at least three positive solutions to

the considered boundary value problem.
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1 Introduction

Nabla fractional calculus is a branch of mathematics that deals with arbi-
trary order differences and sums in the backward sense. The theory of nabla
fractional calculus is still in its early stages, with the most important contri-
butions appearing in the last decade. Gray & Zhang [23] and Miller & Ross
[21] introduced the concept of nabla fractional difference and sum. Atici
& Eloe [7] developed the nabla fractional Riemann–Liouville difference op-
erator, began the study of the nabla fractional initial value problem, and
established the exponential law, product rule, and nabla Laplace transform
in this line. Several mathematicians [4, 5, 6, 7, 24, 25, 13, 16, 14, 17, 15] have
contributed to the theory of discrete fractional calculus and as a result of
their works, today it has turned into a fruitful field of research in science and
engineering. We refer to a recent monograph by Goodrich & Peterson [21]


