OPTIMAL CONTROL OF AN EVOLUTION PROBLEM WITH TIME AND STATE-DEPENDENT MAXIMAL MONOTONE OPERATORS

Soumia Saïdi
LMPA Laboratory,
Department of Mathematics, Faculty of Exact Sciences and Informatics, Mohammed Seddik Benyahia University, 18000 Jijel, Algeria
E-mail address: soumiasaidi44@gmail.com

Abstract

The current paper focuses on a new class of optimal control problems for perturbed differential inclusions driven by time and state-dependent maximal monotone operators with single-valued perturbations (with mixed control-state). We establish some existence results for this kind of dynamics and optimal solutions to the corresponding minimizing Bolza-type functional.

Keywords. Differential inclusion, maximal monotone operator, pseudo-distance, optimal control.
AMS (MOS) subject classification: 34A60, 47J35, 34G25, 49J52, 49 J 53.

1 Introduction and formulation of the problem

The optimal control problem (P) to investigate in the present work consists of minimizing the Bolza-type functional

$$
\begin{equation*}
J_{0}[x, u, a]=\psi(x(T))+\int_{0}^{T} l_{0}(t, x(t), u(t), a(t), \dot{x}(t), \dot{u}(t), \dot{a}(t)) d t \tag{1.1}
\end{equation*}
$$

on the set of feasible controls $(u(\cdot), a(\cdot))$ and the associated solutions $x(\cdot)$ of

$$
\left\{\begin{array}{l}
-\dot{x}(t) \in A(t, u(t)) x(t)+f(a(t), x(t)) \quad \text { a.e. } t \in[0, T], \tag{1.2}\\
x(t) \in \mathrm{D}(A(t, u(t))) t \in[0, T], \\
(u(\cdot), a(\cdot)) \in W^{1,2}\left([0, T], \mathbb{R}^{n+m}\right), \\
u(0)=u_{0}, x(0)=x_{0} \in \mathrm{D}\left(A\left(0, u_{0}\right)\right) .
\end{array}\right.
$$

The operator $A(t, y): \mathrm{D}(A(t, y)) \subset \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$, for any $(t, y) \in[0, T] \times \mathbb{R}^{n}$, is maximal monotone, whose domain is denoted $\mathrm{D}(A(t, y))$. The perturbation $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ is a continuous map. The terminal cost functional $\psi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and the running cost $l_{0}:[0, T] \times \mathbb{R}^{4 n+2 m} \rightarrow \overline{\mathbb{R}}$ satisfy appropriate assumptions.

Define the set-valued map $F:[0, T] \times \mathbb{R}^{2 n+m} \rightarrow 2^{\mathbb{R}^{n}}$ by

$$
\begin{equation*}
F(t, z)=F(t, x, u, a)=A(t, u) x+f(a, x) . \tag{1.3}
\end{equation*}
$$

The associated Cauchy problem to the differential inclusion (1.2) can be expressed in term of $z \in \mathbb{R}^{2 n+m}$ as

$$
\begin{equation*}
-\dot{z}(t) \in F(t, z(t)) \times \mathbb{R}^{n} \times \mathbb{R}^{m}=G(t, z(t)) \text { a.e. } t \in[0, T] \tag{1.4}
\end{equation*}
$$

