BEHAVIOR OF A DISCRETE ECOLOGICAL MODEL

T. F. Ibrahim ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, tfibrahem@mans.edu.eg
${ }^{2}$ Department of Mathematics, Faculty of Sciences and arts in Mahayel Aseer King Khalid University, Abha, Saudi Arabia

Abstract

. We study the persistence,boundedness and unboundedness,existence and uniqueness of positive equilibrium point, local and global asymptotic stability, and rate of convergence of the following system of exponential form difference equations: $$
x_{n+1}=\alpha_{1}+\beta_{1} y_{n}+\gamma_{1} y_{n-1} e^{-x_{n}}, y_{n+1}=\alpha_{2}+\beta_{2} x_{n}+\gamma_{2} x_{n-1} e^{-y_{n}} n=0,1, \cdots
$$

where initial values $x_{-1}, y_{-1}, x_{0}, y_{0}$ and parameters $\alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2}$ are positive real numbers.Finally,some numerical examples are given to verify our theoretical results.
Keywords. difference equations; boundedness; unboundedness; persistence; local and global asymptotic stability; rate of convergence.
AMS (MOS) subject classification: 39A10, 40A05

1 Introduction

Difference equations or systems of difference equations play a vital role in the development of different sciences ranging from life to decision sciences (see [1]-[5], [7]-[21, $, 23, ~[24, ~[28] ~ a n d ~ r e f e r e n c e s ~ c i t e d ~ t h e r e i n) . ~ O n e ~ o f ~ t h e ~ m o s t ~ i m-~$ portant types of difference equation is the exponential form difference equation. These types have many applications in our life. For instance,El-Metwally et al [6] studied the qualitative behavior of the following population model

$$
x_{n+1}=\alpha+\beta x_{n-1} e^{-x_{n}}
$$

Papaschinopoulos et al. 25] investigated the asymptotic behavior of the positive solutions of the following systems of difference equations

$$
\begin{array}{ll}
x_{n+1}=\alpha_{1}+\beta_{1} y_{n-1} e^{-x_{n}}, & y_{n+1}=\alpha_{2}+\beta_{2} x_{n-1} e^{-y_{n}} \\
x_{n+1}=\alpha_{1}+\beta_{1} y_{n-1} e^{-y_{n}}, & y_{n+1}=\alpha_{2}+\beta_{2} x_{n-1} e^{-x_{n}}
\end{array}
$$

A. Q.Khan et al. [22] investigated the qualitative behavior of the positive solution of following system of difference equation

$$
x_{n+1}=\frac{\alpha e^{-y_{n}}+\beta e^{-y_{n-1}}}{\gamma+\alpha x_{n}+\beta x_{n-1}}, \quad y_{n+1}=\frac{\alpha_{1} e^{-x_{n}}+\beta_{1} e^{-x_{n-1}}}{\gamma_{1}+\alpha_{1} y_{n}+\beta_{1} y_{n-1}}
$$

