Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 30 (2023) 149-202 Copyright ©2023 Watam Press

http://www.watam.org

ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC PROBLEM WITH ACOUSTIC BOUNDARY CONDITIONS AND VARIABLE-EXPONENT NONLINEARITIES

Abita Rahmoune¹ and Benabderrahmane Benyattou²

¹Laboratory of Pure and Applied Mathematics University of Laghouat P.O. Box 37G, Laghouat 03000, Algeria

²Laboratory of Pure and Applied Mathematics Mohamed Boudiaf University M'sila 28000, Algeria

Abstract. The main goal of this work is to investigate the existence and uniqueness of the global solution of a mixed problem associated with a nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and nonlinear boundary interior sources with variable exponents and acoustic boundary conditions in a bounded domain. We establish a general stability result for the equation without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function.

Keywords. Balakrishnan-Taylor damping, Acoustic boundary conditions, global existence; general decay, relaxation function, viscoelastic equation; Lebesgue and Sobolev spaces with variable exponents

AMS (MOS) subject classification: 49Q15, 35L05, 35L20, 35B40; 35B35.

1 Introduction

In this paper, we study the following viscoelastic problem with Balakrishnan-Taylor damping, nonlinear boundary interior sources and acoustic boundary conditions involving the variable-exponent nonlinearities

$$u_{tt} - M\left(\left|\nabla u\left(t\right)\right|^{2}\right)\Delta u + \int_{0}^{t} g\left(t-s\right)\Delta u\left(s\right) ds = \left|u\right|^{p(x)-1} u \text{ in } \Omega \times \left(0,+\infty\right),$$
(1)

$$u = 0 \text{ on } \Gamma_0 \times (0, +\infty) , \qquad (2)$$