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Abstract. Let X∗ be the dual space of a real Banach space X, F : X → X∗ and

K : X∗ → X be Lipschitz monotone maps. An explicit iterative process is introduced

for solving the Hammerstein type equation, u + KFu = 0, in reflexive real Banach spaces

assuming that the solution exists. Then, strong convergence results are established under

appropriate conditions. Many of the existing results in the literature are generalized and

improved in this paper.
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1 Introduction

Let X∗ be the dual space of a real Banach space X and C be a nonempty
subset of X. A map F : C → X∗ is called monotone if

〈x− y, Fx− Fy〉 ≥ 0,∀x, y ∈ C.

We say that the map F is α-inverse strongly monotone if there exists α > 0
such that

〈x− y, Fx− Fy〉 ≥ α||Fx− Fy||2X∗ ,∀x, y ∈ C.

One can easily observe that an α-inverse strongly monotone map is monotone.

Let F : X → X∗ be a monotone map and G(F ) = {(x, Fx) : x ∈ X}
be the graph of F. Then F is said to be maximal if G(F ) is not a proper
subset of G(T ), for any other monotone map T : X → X∗. That means, a
monotone map F is maximal if and only if u = Fx, whenever (x, u) ∈ X×X∗
and 〈x− y, u− v〉 ≥ 0 for every (y, v) ∈ G(F ).


