Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 29 (2022) 347-361 Copyright ©2022 Watam Press

http://www.watam.org

BOUNDED AND UNBOUNDED POSITIVE SOLUTIONS FOR SINGULAR ϕ -LAPLACIAN BVPS ON THE HALF-LINE WITH FIRST-ORDER DERIVATIVE DEPENDENCE

Dhehbiya Belal¹, Kamel Bachouche² and Abdelhamid Benmezaï³

¹Faculty of Sciences Adrar University, Adrar, Algeria

²Faculty of Sciences, Algiers University 1, Algiers, Algeria

³Faculty of Mathematics, USTHB, Algiers, Algeria.

Abstract. In this paper, we provide existence results for positive solutions to the singular ϕ -Laplacian boundary value problem

$$\left\{ \begin{array}{l} -(\phi(u'))'=a(t)f(t,u,u'), \ t\in(0,+\infty) \\ u(0)=\lim_{t\to+\infty}u'(t)=0, \end{array} \right.$$

where $\phi: \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism such that $\phi(0) = 0, a: (0, +\infty) \to \mathbb{R}^+$ is a measurable function with a(t) > 0 a.e. t in some interval of $(0, +\infty)$ and the nonlinearity $f: \mathbb{R}^+ \times (0, +\infty) \times (0, +\infty) \to \mathbb{R}^+$ is continuous and may exhibit singular at the solution and at its derivative.

Keywords. ϕ -Laplacian; Singular BVPs; Unbounded intervals; Positive solution; Fixed point theory in cones.

AMS (MOS) subject classification: 34B15, 34B16, 34B18, 34B40.

1 Introduction and main results

This paper concerns existence of positive solutions to the second order boundary value problem (byp for short)

$$\begin{cases} -(\phi(u'))'(t) = a(t)f(t, u(t), u'(t)) \text{ a.e. } t > 0, \\ u(0) = \lim_{t \to +\infty} u'(t) = 0, \end{cases}$$
(1.1)

where $\phi: \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism such that $\phi(0) = 0$, $a: (0, +\infty) \to \mathbb{R}^+$ is a measurable function with a(t) > 0 a.e. t in some interval of $(0, +\infty)$ and the nonlinearity $f: \mathbb{R}^+ \times (0, +\infty)^2 \to \mathbb{R}^+$ is continuous and may exhibit singular at u = 0 and u' = 0.