http://www.watam.org

VARIATIONAL APPROACHES TO EQUATIONS OF P(X)-LAPLACE TYPE OPERATORS WITH VARIABLE EXPONENTS AND NONLINEAR BOUNDARY CONDITIONS

Shapour Heidarkhani¹, Anderson L. A. De Araujo², Ghasem A. Afrouzi ³ and Sina Pourali Roudbari ³

¹Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran

²Departamento de Matemática, Universidade Federal de Viçosa, 36570-000, Viçosa (MG), Brazil

³ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Abstract. In this paper, under appropriate growth conditions on the nonlinear terms and by applying variational methods and the some recent critical points theorems, we establish the existence of multiple solutions for a nonlinear elliptic equations of p(x)-Laplace type operators with variable exponents, describing precisely a range for the parameter in all the results of existence and multiplicity. Some applications and examples illustrate the obtained results.

Keywords. Variable exponent; Nonlinear boundary conditions; p(x)-Laplace type operators.

AMS (MOS) subject classification: 35J35, 35J60.

1 Introduction

In the present paper, we are concerned with the existence and multiplicity of weak solutions of nonlinear Neumann boundary problems and variable exponents involving p(x)-Laplace type

$$\begin{cases} -div \left[a(x, \nabla u)\right] + |u|^{p(x)-2}u = \lambda f(x, u), & \text{in } \Omega, \\ a(x, \nabla u).v = \lambda g(x, u), & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $\lambda \in [0, \infty)$, $\Omega \subset \mathbb{R}^N (N \geq 2)$ is a bounded domain with smooth boundary $\partial\Omega$ and v is the outward normal vector on $\partial\Omega$, $f : \Omega \times \mathbb{R} \to \mathbb{R}$ and $g : \partial\Omega \times \mathbb{R} \to \mathbb{R}$ are two Carathéodory functions and $p \in C(\overline{\Omega})$ is the variable exponent and is globally log-Holder continuous on Ω (see Definition