Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 29 (2022) 191-208 Copyright ©2022 Watam Press

http://www.watam.org

A COUPLED CAPUTO–HADAMARD FRACTIONAL DIFFERENTIAL SYSTEM WITH MULTIPOINT BOUNDARY CONDITIONS

Samir Aibout^{1a}, Saïd Abbas^{1b}, Mouffak Benchohra² and Martin Bohner³

¹ ^aLaboratory of Mathematics / ^bDepartment of Mathematics Tahar Moulay University of Saïda, En-Nasr, 20000 Saïda, Algeria adamaibout1982@yahoo.com, abbasmsaid@yahoo.fr

> ² Laboratory of Mathematics Djillali Liabes University of Sidi Bel-Abbès Sidi Bel-Abbès 22000, Algeria benchohra@yahoo.com

³ Missouri S&T, Rolla, Missouri 65401, USA bohner@mst.edu

Abstract. This paper deals with existence of solutions for a coupled system of Caputo– Hadamard fractional differential equations with multipoint boundary conditions in Banach spaces. Some applications are made using some fixed point theorems on Banach spaces. An illustrative example is presented in the last section.

Keywords. Fractional differential equation, coupled system, mixed Hadamard integral of fractional order, Caputo–Hadamard fractional derivative, solution, fixed point.

AMS (MOS) subject classification: 26A33.

1 Introduction

Fractional calculus has recently been applied in various areas of engineering, mathematics, physics, bio-engineering, and other applied sciences [20]. For some fundamental results in the theory of fractional calculus and fractional differential equations, we refer the reader to the monographs of Abbas et al. [2, 4, 5], Samko et al. [19], Kilbas et al. [16], and Zhou [22], and the papers [7–9, 11, 14, 21] and the references therein.

In [1,3], the authors studied some classes of fractional differential equations involving the Caputo–Hadamard fractional derivative. The paper [1] deals with the existence of solutions for the Cauchy problem of the Caputo– Hadamard fractional problem

$$\begin{cases} \begin{pmatrix} ^{\mathrm{HC}}D_{1}^{r}u \end{pmatrix}(t) = f(t, u(t)), & t \in [1, \infty), \\ u(t)|_{t=1} = \phi \in E, \end{cases}$$