EXISTENCE AND BLOW-UP RESULT FOR WAVE EQUATION WITH VARIABLE EXPONENT

Soh Edwin Mukiawa and Cyril Dennis Enyi

Department of Mathematics University of Hafr Al Batin, Saudi Arabia

Abstract. In the present work, we consider a wave equation with sign changing coefficient and variable exponent nonlinear source term. Using analytical arguments and appropriate estimates of some functionals, we establish the well-posedness and show that the solutions blows up in finite time. This result complements and generalize previous results in the literature.

Keywords. Wave Equation, Nonlinear source, Well-posedness, blow up, sign changing, variable exponent.

AMS (MOS) subject classification: 35B33, 35B44, 35D30, 35G60.

1 Introduction

In this paper, we consider the following problem

$$\begin{cases} u_{tt}(x,t) - \Delta u(x,t) + \delta u_t(x,t) \\ + a(x,t)u(x,t) = |u(x,t)|^{p(x)-2}u(x,t), & \text{in } \Omega \times (0,T), \\ u = 0, & \text{on } \partial\Omega \times (0,T), \\ u(x,0) = u_0(x), & u_t(x,0) = u_1(x), & \text{in } \Omega, \end{cases}$$
(1)

where $\delta>0, \quad 0< T<\infty, \ \Omega\subset\mathbb{R}^n (n\geq 2)$ is a bounded domain with smooth boundary $\partial\Omega, \ a=a(x,t)$ is a bounded continuous and sign changing function. For example, if $f:[0,\infty)\to(-\infty,\infty)$ is any function and $g:\Omega\to(-\infty,\infty)$ is a bounded function, then $a(x,t)=(\mathrm{sign} f)(t)g(x)$ is an example of a sign changing function. The variable exponent p(x) is a given measurable function on Ω satisfying

$$2 \le p_1 \le p(x) \le p_2 \le \frac{2n}{n-2}, \quad n \ge 3,$$
 (2)

where

$$p_1 = \operatorname{ess inf}_{x \in \Omega} p(x), \ p_2 = \operatorname{ess sup}_{x \in \Omega} p(x)$$