Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 29 (2022) 33-50 Copyright ©2022 Watam Press

http://www.watam.org

THE SOLUTION AND DYNAMIC BEHAVIOR OF SOME DIFFERENCE EQUATIONS OF FOURTH ORDER

M. B. Almatrafi^{1,2}, E. M. Elsayed^{2,3} and Faris Alzahrani²

¹Department of Mathematics, Faculty of Science, Taibah University, Saudi Arabia.

²Mathematics Department, Faculty of Science, King Abdulaziz University,

P. O. Box 80203, Jeddah 21589, Saudi Arabia.

³Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. E-mails: mmutrafi@taibahu.edu.sa, emmelsayed@yahoo.com, faris.kau@hotmail.com.

Abstract. Difference equations have been recently utilized to model some natural phenomena appearing in various nonlinear sciences. Thus, constructing the exact solutions of such equations is a significantly important area for scientists. The essential purpose of this article is to introduce the solution and the global attractivity of the following difference equations:

 $x_{n+1} = \frac{\alpha x_n x_{n-3}}{\beta x_{n-3} + \gamma x_{n-2}}, \quad x_{n+1} = \frac{\alpha x_n x_{n-3}}{-\beta x_{n-3} - \gamma x_{n-2}}, \quad n = 0, 1, ...,$

where the constants α , β and γ are positive real numbers and the initial conditions x_{-3} , x_{-2} , x_{-1} and x_0 are arbitrary non-zero real numbers. We also depict some 2D figures under certain conditions for the obtained results.

 ${\bf Keywords.}\ {\rm stability,\ periodicity,\ boundedness,\ global\ attractor,\ difference\ equations.}$

AMS (MOS) subject classification: 39A10.

1 Introduction

In this work we will present a significant study about the solution behaviour, boundedness and solving some specific forms of the following difference equations:

$$x_{n+1} = \frac{\alpha x_n x_{n-3}}{\beta x_{n-3} + \gamma x_{n-2}}, \quad x_{n+1} = \frac{\alpha x_n x_{n-3}}{-\beta x_{n-3} - \gamma x_{n-2}}, \quad n = 0, 1, \dots, \quad (1)$$

where the initial conditions x_{-3} , x_{-2} , x_{-1} and x_0 are arbitrary non zero real numbers and α , β , γ are positive arbitrary constants.

In recent years, enormous number of researchers and scholars has put a lot of effort into investigating nonlinear difference equations. Specifically, they