ANALYSIS OF DISCHARGE PATTERNS OF SUBTHALAMIC NUCLEUS AND EXTERNAL GLOBUS PALLIDUS COUPLING IN PARKINSON CONDITION USING PARTICLE SWARM OPTIMIZATION ALGORITHM

Shri Dhar\(^1\) Phool Singh\(^2\) Jyotsna Singh\(^3\) A K Yadav\(^4\) Sanjay Yadav\(^1\)

\(^1\)Department of Applied Science
NorthCap University, Gurugram, Haryana, India
\(^2\)Department of Mathematics, SoET
Central University of Haryana, Mahendergarh, Haryana, India
\(^3\)IILM Academy of Higher Learning
College of Engineering and Technology, Greater Noida, Uttar Pradesh, India
\(^4\)Department of Mathematics, Amity School of Applied Sciences
Amity University Haryana, Gurugram, India

Abstract. Parkinson disease is characterized by movement disorder of certain body parts. In this disease, part of the brain known as basal ganglia is affected the most. In this paper, a coupled model of subthalamic nucleus and external globus pallidus (STN-GPe) is considered. It consists of the study of discharge patterns of a primate suffering with Parkinson disease and its comparison with the discharge patterns of a healthy primate. Non-uniform lags are known to be present in discharge patterns of a Parkinson primate. Membrane potential of external globus pallidus for potassium \(V_{K_{GP_e}}\), membrane potential of external globus pallidus for sodium \(V_{Na_{GP_e}}\), external globus pallidus current \(I_{GP_e}\) and synaptic conductance from STN to GPe \(g_{stn}\) are the four key parameters of the coupled model affecting the computing the discharge patterns. These parameters have been optimized so that discharge patterns of a Parkinson primate mimic the discharge patterns of a healthy primate. The optimization has been done using particle swarm optimization for a time span of 50 msec and 100 msec. The results are validated by computing correlation coefficient between the two discharge patterns. The value obtained for correlation coefficient is 0.99, showing a very high similarity between the two discharge patterns and the removal of lags between them.

Keywords. Discharges patterns, globus pallidus, Parkinson disease, particle swarm optimization, subthalamic nucleus

AMS (MOS) subject classification: 92B05, 68T20, 68T99, 68W40.