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1 Introduction

Problems related to viscoelasticity have attracted a great deal of attention
and several papers of existence and long-time behavior have been published.
Cavalcanti [5] discussed the following problem
|ut|ρutt −∆u−∆utt +

∫ t
0
g(t− s)∆u(s)ds− γ∆ut = 0, in Ω× R+,

u = 0, on Γ× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω× R+,

(1)
where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary Γ, ρ is
a positive real number such that 0 < ρ ≤ 2

n−2 if n ≥ 3 and ρ > 0 if n = 1, 2,
and g is a positive exponentially decaying function. They proved a global
existence result for γ ≥ 0 and an exponential decay result for the case γ > 0.
Messaoudi and Tatar [28, 27] considered (1), for γ = 0, and showed that
the solution energy decays exponentially (resp. polynomially) if g decays
exponentially (resp. polynomially). Later, Han and Wang [14] considered
(1) for γ = 0 and with a relaxation function of more general decay type, and
established, similarly to the work of Messaoudi [20], a general decay result,



382 M.M. Al-Gharabli1 and A.M. Al-Mahdi

from which the usual exponential and polynomial decay are only special cases.
Messaoudi and Mustafa [26] considered (1) for relaxation functions satisfying
a relation of the form

g′(t) ≤ −H(g(t)), (2)

where H is a convex function satisfying some smoothness conditions. They
established a general relation between the decay rate for the energy and
that of the relaxation function g without imposing restrictive assumptions
on the behavior of g at infinity. Messaoudi and Al-Gharabli [22] studied (1)
in the presence of infinite memory and with a relaxation function satisfying
g′(t) ≤ −ξ(t)g(t). They established a general decay result depending on
the relaxation function g. In [7], Cavalcanti et al. considered (1) with a
relaxation function satisfying (2) and the additional requirement:

lim inf
x→0+

x2H ′′(x)− xH ′(x) +H(x) ≥ 0,

and that y1−α0 ∈ L1(1,∞), for some α0 ∈ [0, 1), where y(t) is the solution of
the problem

y′(t) +H(y(t)) = 0, y(0) = g(0) > 0.

They characterized the decay of the energy by the solution of a corresponding
ODE as in [16]. Recently, Messaoudi and Al-Khulaifi [25] treated (1) with
a relaxation function satisfying (11) (below). They obtained a more general
stability result for which the results of [21, 20] are only special cases. More-
over, the optimal decay rate for the polynomial case is achieved without any
extra work and conditions as in [15] and [16]. For more results related to
problem (1), we refer the reader to Liu [17, 18].
For infinite history problems, Giorgi et al. [9] considered the following semi-
linear hyperbolic equation, in a bounded domain Ω ⊂ R3,

utt −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f

with K(0),K(∞) > 0 and K ′ ≤ 0 and gave the existence of global attractors
for the solutions. Conti and Pata [8] considered the following semilinear
hyperbolic equation with linear memory in a bounded domain Ω ⊂ Rn ,

utt + αut −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f in Ω× R+ (3)

where the memory kernel is a convex decreasing smooth function such that
K(0) > K(∞) > 0 and g : R → R is a nonlinear function of at most cubic
growth satisfying some conditions. They proved the existence of a regular
global attractor. In [3], Appleby et al. studied the linear integro-differential
equation

utt +Au(t) +

∫ t

−∞
K(t− s)Au(s)ds = 0, t > 0
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and established results of exponential decay of strong solutions in a Hilbert
space. Pata [30] discussed the decay properties of the semigroup generated
by the following equation

utt + αAu(t) + βut(t)−
∫ +∞

0

µ(s)Au(t− s)ds = 0

where A is a strictly positive self-adjoint linear operator and α > 0, β ≥ 0
and the memory kernel µ is a decreasing function satisfying specific condi-
tions. He established the necessary as well as the sufficient conditions for the
exponential stability. In [10], Guesmia considered

utt +Au−
∫ +∞

0

g(s)Bu(t− s)ds = 0

and introduced a new ingenuous approach for proving a more general decay
result based on the properties of convex functions and the use of the gen-
eralized Young inequality. He used a larger class of infinite history kernels
satisfies the following condition∫ +∞

0

g(s)

G−1(−g′(s))
ds+ sup

s∈R+

g(s)

G−1(−g′(s))
< +∞, (4)

such that
G(0) = G′(0) = 0 and lim

t→+∞
G′(t) = +∞, (5)

where G : R+ → R+ is an increasing strictly convex function. Using this
approach, Guesmia and Messaoudi [13] later looked into

utt−∆u+

∫ t

0

g1(t−s)div(a1(x)∇u(s))ds+

∫ +∞

0

g2(s)div(a2(x)∇u(t−s))ds = 0

in a bounded domain and under suitable conditions on a1, a2 and for a wide
class of relaxation functions g1 and g2 which are not necessarily decaying
polynomially or exponentially. They established a general decay result from
which the usual exponential and polynomial decay rates are only special
cases. Al-Mahdi and Al-Gharabli [2] considered the following viscoelastic
problem
utt −∆u+

∫ +∞
0

g(s)∆u(t− s)ds+ |ut|m−2
ut = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× (0,+∞)

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω× (0,+∞),

(6)
and they established decay results in which the relaxation function h satisfies

g′(t) ≤ −ξ(t)gp(t), ∀t ≥ 0, 1 ≤ p < 3

2
, (7)
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and they obtained a better decay rate than the one of [10] and [12]. Mustafa
[29] conside the following coupled quasilinear system|ut|ρ utt −∆u−∆utt +

∫ t

0

g1(s)∆u(t− s)ds+ f1(u, v) = 0

|vt|ρ vtt −∆v −∆vtt +
∫∞

0
g2(s)∆v(t− s)ds+ f2(u, v) = 0

(8)

and established more general decay rate results where the relaxation functions
satisfy g′i(t) ≤ −H(gi(t)), i = 1, 2. He provided more general decay rates for
which the usual exponential and polynomial rates are only special cases. For
more results with infinite history, we refer the reader to [22, 24, 23, 1, 4, 19, 6].
In this paper, our aim is to investigate the following problem
|ut|ρutt −∆u−∆utt +

∫ +∞
0

g(s)∆u(t− s)ds = 0, in Ω× R+,

u = 0, on Γ× R+,

u(x,−t) = u0, ut(x, 0) = u1(x), in Ω× R+,

(9)
for a relaxation function satisfying (11) (below) and obtain a general stability
result for a wide class of kernels, among which those of the exponential decay
type, are only special cases. Equation (9) is a nonlinear wave equation with
the presence of a viscoelastic damping with infinite memory supplemented
by a history function u0 and initial data u1. Here, Ω is a bounded domain
of RN (N ≥ 1) with a smooth boundary Γ, u is the transverse displacement
of waves, the relaxation function g is positive and decreasing, the exponent
ρ is a positive real number satisfying some conditions to be specified later.
In the present work, we study the asymptotic behavior of solutions of (9),
under the assumption (11)(below) instead of (4) considered in Guesmia [10]
and Messaoudi and Al-Gharabli [22] and instead of (7) considered in Al-
Mahdi and Al-Gharabli [2]. Moreover, our technique is different than the one
in [29] and we deleted some assumptions on the boundedness of initial data
used in many earlier papers in the literature. In fact, our results generalize,
extend and improve many earlier results in the literature.
This paper is organized as follows. In section 2, we present some notations
and material needed for our work. Some technical lemmas and the decay
results are presented in section 3 and section 4, respectively.

2 Assumptions

In this section, we present some material needed for the proof of our result.
We use the standard Lebesgue space L2(Ω) and the Sobolev space H1

0 (Ω)
with their usual scalar products and norms. For the relaxation function g,
we assume the following

(A1) g : R+ → R+ is a C1 decreasing function satisfying

g(0) > 0, 1−
∫ +∞

0

g(s)ds = ` > 0. (10)
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(A2) There exists a nonincreasing differentiable function ξ : R+ → R+ such
that

g′(t) ≤ −ξ(t)gp(t), ∀ 1 ≤ p < 2, t ∈ R+. (11)

(A3) For the nonlinearity, we assume that

0 < ρ ≤ 2

N − 2
, N ≥ 3 and ρ > 0, N = 1, 2. (12)

The energy associated with problem (9) is

E(t) =
1

ρ+ 2

∫
Ω

|ut|ρ+2
dx+

`

2

∫
Ω

|∇u|2dx+
1

2

∫
Ω

|∇ut|2dx+
1

2
(go∇u)(t),

(13)
where

(go∇u)(t) =

∫ +∞

0

g(s)‖∇u(t− s)−∇u(t)‖22ds.

Direct differentiation, using (9), gives

E′(t) =
1

2
(g′o∇u)(t) ≤ 0. (14)

For completeness we state, without proof, the existence result which can be
established exactly repeating the proof of [5].

Proposition 1 Let (u0(., 0), u1) ∈ H1
0 (Ω) × H1

0 (Ω) be given. Assume that
(A1)−(A4) are satisfied; then problem (9) has a unique global (weak) solution

u ∈ C1(R+;H1
0 (Ω)).

3 Technical Lemmas

In this section, we state and establish several lemmas needed for the proof
of our main result.

Lemma 2 There exists a positive constant M1 such that∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds ≤M1h0(t), (15)

where h0(t) =
∫ +∞

0
g(t+ s)

(
1 + ||∇u0(s)||2

)
ds.
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Proof. The proof is identical to the one in [11]. Indeed, we have∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds

≤ 2||∇u(t)||2
∫ +∞

t

g(s)ds+ 2

∫ +∞

t

g(s)||∇u(t− s)||2ds

≤ 2 sup
s≥0
||∇u(s)||2

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u(−s)||2ds

≤ 4E(s)

`

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u0(s)||2ds

≤ 4E(0)

`

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u0(s)||2ds

≤M1

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(16)

where M1 = max
{

2, 4E(0)
`

}
.

4 Decay of solution

In this section we state and prove the main result of our work.

Lemma 3 [22] Assume that (A1) − (A3) hold. Then there exist constants
ε, α1, α2,M > 0 such that the functional

L = ME + εχ1 + χ2

satisfies, for all t ∈ R+,
L ∼ E. (17)

Moreover,
L′(t) ≤ −α1E(t) + α2(go∇u)(t), (18)

where

χ1(t) :=
1

ρ+ 1

∫
Ω

|ut|ρutudx+

∫
Ω

∇u.∇utdx

and

χ2(t) :=

∫
Ω

(
∆ut −

|ut|ρut
ρ+ 1

)∫ +∞

0

g(s)(u(t)− u(t− s))dsdx

Theorem 4 Let (u0(·, 0), u1) ∈ H1
0 (Ω) × H1

0 (Ω) be given. Assume that
(A1) − (A3) hold. Then there exist strictly positive constants C, δ0, δ1 such
that the solution of (9) satisfies, for all t > t0,

E(t) ≤ δ1
(

1 +

∫ t

0

(g(s))1−δ0ds

)
e−δ0

∫ t
0
ξ(s)ds + δ1

∫ +∞

t

g(s)ds, p = 1,

(19)
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and

E(t) ≤ C(1 + t)
−1
p−1 ξ−

p
p−1 (t)

(
1 +

∫ t

0

(1 + s)
1
p−1 ξ

p
p−1 (s)h(s)ds

)
, 1 < p < 2,

(20)

where h(t) = ξα+1(t) (h0)
α+1

(t) and h0(t) is defined in Lemma 3.1.

Proof. The proof of (19) is similar to the one in [22]. For the proof of (20),
we introduce the following

I(t) =
q

t− t0

∫ t

0

‖∇u(t)−∇u(s)‖2 ds ≤ cq

t− t0

∫ t

0

E(s)ds

≤ cq

t− t0

∫ t

0

E(0)ds < +∞.
(21)

where q is small enough. We see that, for some positive constant c, (15) and
(18) lead to

L′(t) ≤ −cE(t) + cI(t) · 1

I(t)

(
gp·

1
p ◦ ∇u

)
(t) + cM1h0(t)

≤ −cE(t) + cI(t)

(
1

I(t)
gp ◦ ∇u

) 1
p

(t) + cM1h0(t)

≤ −cE(t) + cI1− 1
p (t)

(
−g′

ξ
◦ ∇u

) 1
p

(t) + cM1h0(t)

≤ −cE(t) +
c

[ξ(t)]
1
p

(−g′ ◦ ∇u)
1
p (t) + cM1h0(t)

≤ −cE(t) +
c

[ξ(t)]
1
p

[−E′(t)]
1
p + cM1h0(t).

(22)

Multiply both sides of (22) by ξα+1Eα where p = α+ 1, we get

ξα+1(t)Eα(t)L′(t) ≤ −cξα+1(t)Eα+1(t) + c
(
ξ

α
α+1 (t)

)
(ξαEα) (t)(−E′)

1
α+1 (t)

+ cM1h0(t)ξα+1(t)Eα(t).
(23)

Since α
α+1 > 0 and ξ(t) ≤ ξ(0), (23) becomes

ξα+1Eα(t)L′(t) ≤ −cξα+1(t)Eα+1(t)

+ c (ξαEα) (t)(−E′)
1

α+1 (t) + cM1h0(t)ξα+1(t)Eα(t).
(24)

Using Young’s inequality with γ = α + 1 and γ′ = α+1
α in the second and

third terms of (24), we get

ξα+1(t)Eα(t)L′(t) ≤ −cξα+1(t)Eα+1(t) + ε
(
ξα+1Eα+1

)
(t)− cεE′(t)

+ cξα+1(t)εEα+1(t) + cε (h0(t))
α+1

.
(25)
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Therefore, we have

ξα+1(t)Eα(t)L′(t)+cεE
′(t) ≤ −(c−ε−cε)ξα+1(t)Eα+1(t)+cεξ

α+1(t) (h0(t))
α+1

.
(26)

Choosing ε small enough, letting F := ξα+1EαL + cεE ∼ E and h(t) =

ξα+1(t) (h0(t))
α+1

, we have for a positive constants c1 and c2,

F ′(t) ≤ −c1ξα+1Fα+1 + c2h(t). (27)

Multiply both sides of (27) by ξβ , for β > 1, then we have

ξβ(t)F ′(t) ≤ −c1ξα+1+β(t)Fα+1(t) + c2ξ
β(t)h(t). (28)

Recalling that ξ > 0 and ξ′ ≤ 0, one can have

(ξβF )′(t) ≤ −c1ξα+1+β(t)Fα+1(t) + c2ξ
βh(t), (29)

noting ϕ = ξβF and taking β = α+1
α , we obtain

ϕ′(t) ≤ −c1ϕα+1(t) + c2ξ
β(t)h(t). (30)

Let

f(t) := ϕ(t)−Ψ(t); where Ψ(t) = c2(1+t)
−1
α

∫ t

0

ξβ(s)h(s)(1+s)
1
α ds. (31)

From the definition of Ψ, we have

c2ξ
β(t)h(t) = Ψ′(t) +

c2
α

(1 + t)
−1
α −1

∫ t

0

ξβ(s)h(s)(1 + s)
1
α ds (32)

and for all t ≥ t0 > 0,

ν :=

∫ t0

0

ξβ(s)h(s)(1 + s)
1
α ds ≤

∫ t

0

ξβ(s)h(s)(1 + s)
1
α ds

and then ∫ t
0
ξβ(s)h(s)(1 + s)

1
α ds

ν
≥ 1, ∀t ≥ t0.

Thus, (32) yields, ∀t ≥ t0,

c2ξ
β(t)h(t) ≤ Ψ′(t)+

1

αcα2 ν
α
cα+1
2

[
(1 + t)

−1
α

]α+1
[∫ t

0

ξβ(s)h(s)(1 + s)
1
α ds

]α+1

.

(33)
We can choose c2 large enough so that 1

αcα2 ν
α ≤ c1, and then we get

c2ξ
β(t)h(t) ≤ Ψ′(t) + c1Ψα+1, ∀t ≥ t0. (34)
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Now using (34), (30) and the definition of f in (31), we get, ∀t ≥ t0,

f ′(t) = ϕ′(t)−Ψ′(t) ≤ −c1ϕα+1(t) + c2ξ
β(t)h(t)−Ψ′(t)

≤ −c1
[
(f + Ψ)α+1(t)

]
+ c2ξ

β(t)h(t)−Ψ′(t).
(35)

Since f(0) > 0. Then there exists t1 > 0 such that f(t) > 0,∀t ∈ [0, t1).
Hence,

f ′(t) ≤ −c1
[
fα+1(t) + Ψα+1(t)

]
+ c2ξ

β(t)h(t)−Ψ′(t)

≤ −c1
[
fα+1(t) + Ψα+1(t)− c2

c1
ξβ(t)h(t) +

1

c1
Ψ′(t)

]
, ∀ t ∈ [t0, t1).

(36)
Thus,

f ′(t) ≤ −c1fα+1(t), ∀ t ∈ [t0, t1). (37)

Integrate over (t0, t), we have

f(t) ≤ c

(t− t0)
1
α

, ∀ t ∈ [t0, t1). (38)

If t1 = +∞, using again the definitions of f and Ψ, we have, for t large
enough,

ϕ(t) ≤ C(1 + t)
−1
α

[
1 +

∫ t

0

ξβ(s)h(s)(1 + s)
1
α ds

]
. (39)

If t1 < +∞, then there exists t2 > t1 such that f(t) ≤ 0,∀ t1 ≤ t < t2.
Hence, (31) yields ϕ(t) ≤ Ψ(t),∀ t1 ≤ t < t2, consequently, we get (39). If
t2 = +∞, we are done. Otherwise, there exists t3 > t2 such that f(t2) = 0
and f(t) > 0,∀ t2 < t < t3, we then repeat the steps (36)-(38) on [t2, t3)
to obtain (39). Therefore, (39) remains valid for all t ≥ t0. Multiply (39)
by ξ−β and recall the definition of ϕ, then for β = α+1

α we have, for t large
enough

F (t) ≤ C(1 + t)
−1
α ξ−

α+1
α (t)

[
1 +

∫ t

0

ξ
α+1
α (s)h(s)(1 + s)

1
α ds

]
(40)

Using the fact F ∼ E, and recalling that α = p− 1, we get

E(t) ≤ C(1 + t)
−1
p−1 ξ−

p
p−1 (t)

(
1 +

∫ t

0

(1 + s)
1
p−1 ξ

p
p−1 (s)h(s)ds

)
. (41)

This establishes (20).
The following example illustrates our results:
Example: Let g(t) = a

(1+t)q , q > 2, where a is chosen so that hypothesis

(A1) holds, then

g′(t) =
−aq

(1 + t)q+1
= −b

(
a

(1 + t)q

) q+1
q

= −bgp(t), p =
q + 1

q
< 2, b > 0

(42)
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We will discuss two cases:
Case 1: if m0 ≤ 1 + ||∇u0||2 ≤ m1. Then we have the following:

h(t) =

(
ξ(t)

∫ +∞

0

g(t+ s)(1 + ||∇u0(s)||2)ds

)p
≤ c(1+t)p(1−q), q =

1

p− 1
.

(43)
Routine calculations yield, for some positive constant C,∫ t

0

(1 + s)
1

2p−1 ξ
2p

2p−1 (s)h(s)ds ≤ C(1 + t)p(1−q)+
1

2p−1 +1. (44)

Therefore, the estimate (20) yields

E(t) ≤ C(1 + t)
−(q−1)(q−2)(q+1)

q(q+2) . (45)

Case 2: if m0(1 + t)r ≤ 1 + ||∇u0||2 ≤ m1(1 + t)r, where 0 < r < q− 1, then
we have

c1(1+t)−(q−r−1) ≤
∫ +∞

0

g(t+s)(1+||∇u0(s)||2)ds ≤ c2(1+t)−(q−r−1). (46)

Then

h(t) =

(
ξ(t)

∫ +∞

0

g(t+ s)(1 + ||∇u0(s)||2)ds

)p
≤ c2(1 + t)−p(q−r−1) (47)

Therefore, the estimate (20), yields for any 0 < r < q − 1,

E(t) ≤C(1 + t)
−1

2p−1

(
1 + (1 + t)−p(q−r−1)

)
= C(1 + t)−q + C(1 + t)−(pq−pr−p+q)

= C(1 + t)−q + C(1 + t)−(2q+1−pr−p)

≤ (1 + t)
−q
q+2 .

(48)
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