Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 27 (2020) 347-359 Copyright ©2020 Watam Press

ON A PRODUCT-TYPE DIFFERENCE EQUATION OF HIGHER-ORDER

J.F.T. Rabago ¹, T.F. Ibrahim ^{2,3} ,KH. I. Osman ⁴, B.A. Younis ⁵ , A.A.Thagfan ⁴, M.Sh Yahya ⁴,W.S.AbuSarah⁴

¹ College of Science, University of the Philippines Baguio Governor Pack Road, Baguio City 2600, PHILIPPINES, jfrabago@gmail.com W.S.AbuSarah ²Department of

Mathematics, Faculty of Sciences and arts in Mahayel Aseer

King Khalid University, Abha, Saudi Arabia

³Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt , tfibrahem@mans.edu.eg

⁴Department of Mathematics, Faculty of Sciences and Arts in Sarat Abeda, King Khalid University, Abha, Saudi Arabia

⁵Department of Mathematics, Faculty of Sciences and Arts in Zahran Alganoob, King Khalid University, Abha, Saudi Arabia

Abstract.

This work examines the periodicity, stability and form of solutions of the product-type difference equation

 $x_{n+1} = \frac{x_n x_{n-2} \cdots x_{n-2k}}{x_{n-1} x_{n-3} \cdots x_{n-2k-1}}, \quad n = 0, 1, 2, \dots,$

with initials $\{x_n\}_{-2k-1}^0 \in \mathbb{R}$ and k is some fixed non-negative integer. This study also provides some sort of generalization of the results exhibited by the second author in [14].

Keywords. Product-type difference equation, solution form, periodicity, stability.

AMS (MOS) subject classification: 39A10, 40A05.

1 Introduction

A difference equation is a particular example of what is known as a recurrence equation. A classical example of this type of equation is the widely known recurrence equation $A_{n+1} = A_n + A_{n-1}$ with initials $A_0 = 0$ and $A_1 = 1$. Such type of recurrence equation can be classified as a linear difference equation. Meanwhile, a recurrence equation $y_{n+1} = h(y_n, y_{n-1}, \ldots, y_{n-k})$ such that h defined as ratios of polynomials $P(y_n, y_{n-1}, \ldots, y_{n-k})$ and

 $Q(y_n, y_{n-1}, \ldots, y_{n-k})$ is classified as a nonlinear difference equation. A particular example of this type of equation is the so-called Riccati difference equation:

$$y_{n+1} = \frac{by_n + a}{c + dy_n}, \quad n = 0, 1, \dots,$$
 (I.1)

which has been investigated recently by some authors, see, for instance, Brand [5] and Papaschinopoulos and Papadopoulos [24]. Several recent investigations focusing on some instances of the Riccati difference equation