Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 27 (2020) 195-221 Copyright ©2020 Watam Press

OPERATOR NORM INDEPENDENT SOLUTION OF SPLIT EQUALITY EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM FOR CERTAIN MULTIVALUED MAPS

Lateef Olakunle Jolaoso¹, Ferdinard Udochukwu Ogbuisi² and Oluwatosin Temitope Mewomo³

> ^{1,2,3}School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

²DST-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), Johannesburg, South Africa.

Abstract. In this paper, we introduce a new multivalued k-strictly pseudononpsreading mapping T with type-one condition and prove that the set of fixed points of T is closed and convex. We also proved that I - T is demiclosed at zero without the condition that the set of fixed point of T is strict. Using this new mapping, we study the strong convergence of a new iterative algorithm for approximating a common element of the set of solutions of a system of split equality generalized mixed equilibrium problems and fixed point problem of k-strictly pseudononspreading multivalued type-one mappings without a prior knowledge of the operator norm in real Hilbert space. Furthermore, we give a numerical example of our main theorem in real Hilbert spaces. Our result improves and complements some recent corresponding results in the literature.

Keywords. Finite family, split equality, generalized equilibrium, fixed point problems, k-strictly pseudononspreading, multivalued mappings.

AMS (MOS) subject classification: 47H06, 47H09, 47J05, 47J25.

1. INTRODUCTION

Let X be a nonempty set and $T: X \to 2^X$ be a multivalued mapping, a point $x^* \in X$ is called a fixed point of T if $x^* \in Tx^*$. If $Tx^* = \{x^*\}$, then x^* is called a strict fixed point of T. We shall denote the set of fixed points of T by F(T). Let C be a nonempty closed subset of a real Hilbert space H and CB(X) denote the family of nonempty closed and bounded subsets of X. The Hausdorff metric on CB(X) is defined by

$$H(A,B) = \max\left\{\sup_{x\in A} d(x,B), \sup_{y\in B} d(y,A)\right\},\$$

for $A, B \in CB(X)$, where $d(x, B) = \inf\{||x - y|| : y \in B\}$. Let X be a normed space, a subset C of X is called proximinal if for each