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Abstract. In this paper, we introduce a new multivalued k-strictly pseudononpsreading

mapping T with type-one condition and prove that the set of fixed points of T is closed and

convex. We also proved that I−T is demiclosed at zero without the condition that the set

of fixed point of T is strict. Using this new mapping, we study the strong convergence of

a new iterative algorithm for approximating a common element of the set of solutions of a

system of split equality generalized mixed equilibrium problems and fixed point problem of

k-strictly pseudononspreading multivalued type-one mappings without a prior knowledge

of the operator norm in real Hilbert space. Furthermore, we give a numerical example

of our main theorem in real Hilbert spaces. Our result improves and complements some

recent corresponding results in the literature.
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1. Introduction

Let X be a nonempty set and T : X → 2X be a multivalued mapping, a
point x∗ ∈ X is called a fixed point of T if x∗ ∈ Tx∗. If Tx∗ = {x∗}, then
x∗ is called a strict fixed point of T . We shall denote the set of fixed points
of T by F (T ). Let C be a nonempty closed subset of a real Hilbert space H
and CB(X) denote the family of nonempty closed and bounded subsets of
X. The Hausdorff metric on CB(X) is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

for A,B ∈ CB(X), where d(x,B) = inf{||x− y|| : y ∈ B}.
Let X be a normed space, a subset C of X is called proximinal if for each


