Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 27 (2020) 245-264 Copyright ©2020 Watam Press

http://www.watam.org

COMMON BEST PROXIMITY POINTS FOR GENERALIZED PROXIMAL C-CONTRACTION MAPPINGS

Yohannes Gebru¹, K. K. M. Sarma²

¹Department of Mathematics, Wolkite University, Wolkite, Ethiopia Email:yohannesgebru2005@gmail.com ²Department of Mathematics, Andhra Univerity, Visakhapatnam,

Abstract. In this paper, we introduce the notion of $(\phi - \psi - \alpha - \eta)$ -proximal C- contraction pair via a triangular α - admissible with respect to η for a pair of mappings. We discuss the existence and the uniqueness of a common best proximity point of such pair of maps. We provide examples to illustrate the validity of our results.

Keywords. Best Proximity Point, common best proximity point, $(\psi - \phi)$ -generalized proximal contraction, lower semi continuous function.

AMS (MOS) subject classification: Primary 7H10; Secondary 54H25, 11J83

1 Introduction

It is very natural that some mappings, especially non-self-mappings defined on a complete metric space (X, d), do not necessarily possess a fixed point, that is d(x, fx) > 0 for all $x \in X$. In such situations, it is reasonable to search for the existence (and uniqueness) of a point $x^* \in X$ such that $d(x^*, fx^*)$ is an approximation of an $x \in X$ such that d(x, fx) = 0. In other words, one speculates to determine an approximate solution x^* that is optimal in the sense that the distance between x^* and fx^* is minimum. Here, the point $x^* \in X$ is called a best proximity point. This research subject has attracted attention of a number of authors; for example, see [[1, 3, 4, 7]].

In 2016, parvaneh et. al [15] introduced a new proximal C- contractive mapping and established common best proximity point theorems in metric spaces.

In this paper, we generalize and improve certain results of Parvaneh et. al. [15] to obtain some new common best proximity point theorems. Notice also that in the best proximity point theory, we usually consider a non-selfmapping.

For the sake of completeness, we recall some basic definitions and fundamental results on best proximity in the literature.