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Abstract. The purpose of this paper is to propose and study an algorithm for solving

the split equality fixed point problems of η-demimetric mappings in Banach spaces. Under

some mild conditions we establish the norm convergence of the proposed algorithm. We

apply these results to obtain new strong convergence theorems which are connected with

the split feasibility problem, the split equality fixed point problem, and the split null point

problem in Hilbert or Banach spaces. Our theorems extend or complement the results that

have been proved for this important class of nonlinear operators.
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1. Introduction

Let C be a nonempty subset of a real Banach space E with its dual E∗ and
let 1 < p < ∞. The generalized duality mapping from E into 2E

∗
is defined

by:

JpE (x) := {f ∈ E∗ : 〈x, f〉 = ‖x‖p , ‖f‖ = ‖x‖p−1},

where 〈., .〉 denotes the duality pairing. In particular, J2
E = JE is called the

normalized duality mapping. It is well-known (see for example ([29]) that JpE
is single valued if E is smooth and that

(1) JpE (x) = ‖x‖p−2
JE(x), x 6= 0.

Furthermore, if E is uniformly smooth then JpE is uniformly continuous on
bounded subsets of E. If E is a reflexive and strictly convex Banach space
with a strictly convex dual, then JqE∗ : E∗ → 2E is one-to-one, surjective,
and it is the duality mapping from E∗ into E and thus JpEJ

q
E∗ = IE∗ and

JqE∗J
p
E = IE (see, [12]), where q > 1 such that 1

p + 1
q = 1. Furthermore, if


