
Dynamics of Continuous, Discrete and Impulsive Systems
Series A: Mathematical Analysis 26 (2019) 217-230
Copyright c©2019 Watam Press http://www.watam.org

EXTENDING THE ALGEBRAIC MANIPULABILITY
OF DIFFERENTIALS

Jonathan Bartlett1 and Asatur Zh. Khurshudyan2

1The Blyth Institute
jonathan.bartlett@blythinstitute.org

Broken Arrow, OK, USA

2Institute of Mechanics, NAS of Armenia

Abstract. Treating differentials as independent algebraic units have a long history of use

and abuse. It is generally considered problematic to treat the derivative as a fraction of

differentials rather than as a holistic unit acting as a limit, though for practical reasons it

is often done for the first derivative. However, using a revised notation for the second and

higher derivatives will allow for the ability to treat differentials as independent units for a

much larger number of cases.

Keywords. Differentials; Inverse Function Theorem; Faà di Bruno; Higher-Order; Deriva-
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1 Introduction

The calculus of variations has had a long, rich history, with many compet-
ing notations and interpretations. The fluxion was the original concept of
the derivative invented by Isaac Newton, and even had a notation similar to
the modern Lagrange notation. A competing notation for the derivative is
the Leibniz notation, where the derivative is expressed as a ratio of differen-
tials, representing arbitrarily small (possibly infinitesimal) differences in each
variable.

The calculus was originally thought of as examining infinitely small quan-
tities. When these infinitely small quantities were put into ratio with each
other, the result could potentially be within the reals (a likely result for
smooth, continuous functions). But, on their own, these infinitesimals were
thought of as infinitely close to zero.

The concept of an infinitesimal caused a great deal of difficulty within
mathematics, and therefore calculus was revised for the derivative to rep-
resent the limit of a ratio. In such a conception, dx and dy are not really
independent units, but, when placed in ratio with each other, represent the
limit of that ratio as the changes get smaller and smaller. However, many
were not pleased with the limit notion, preferring to view dx and dy as dis-
tinct mathematical objects.
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This question over the ontological status of differentials was somewhat
paralleled by preferences in notation. Those favoring the validity of infinites-
imals generally preferred the Leibniz notation, where dx and dy are at least
visually represented as individual units, while those favoring the limit con-
ception of the derivative generally prefer the Lagrange notation, where the
derivative is a holistic unit.

In an interesting turn of events, in the late 19th century, the Leibniz nota-
tion for the derivative largely won out, but the Langrangian conception of the
derivative has been the favored intellectual interpretation of it. Essentially,
this means that equations are generally written as if there were distinct dif-
ferentials available, but they are manipulated as if they only represent limits
of a ratio which cannot be taken apart.

This dichotomy has led to an unfortunate lack of development of the no-
tation. Because it is generally assumed that differentials are not independent
algebraic units, the fact that issues arise when treating them as such has not
caused great concern, and has simply reinforced the idea that they should not
be treated algebraically. Therefore, there has been little effort to improve the
notation to allow for a more algebraic treatment of individual differentials.

However, as will be shown, the algebraic manipulability of differentials
can be greatly expanded if the notation for higher-order derivatives is re-
vised. This leads to an overall simplification in working with calculus for
both students and practitioners, as it allows items which are written as frac-
tions to be treated as fractions. It prevents students from making mistakes,
since their natural inclination is to treat differentials as fractions.1 Addition-
ally, there are several little-known but extremely helpful formulas which are
straightforwardly deducible from this new notation.

Even absent these practical concerns, we find that reconceptualizing dif-
ferentials in terms of algebraically-manipulable terms is an interesting project
in its own right, and perhaps may help us see the derivative in a new way,
and adapt it to new uses in the future. There may also be additional for-
mulas which can in the future be more directly connected to the algebraic
formulation of the derivative.

2 The Problem of Manipulating Differentials
Algebraically

When dealing with the first derivative, there are generally few practical prob-
lems in treating differentials algebraically. If y is a function of x, then dy

dx is
the first derivative of y with respect to x. This can generally be treated as a
fraction.

For instance, since dx
dy is the first derivative of x with respect to y, it is

easy to see that these values are merely the inverse of each other. The inverse

1Since many in the engineering disciplines are not formally trained mathematicians,
this also can prevent professionals in applied fields from making similar mistakes.
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function theorem of calculus states that dx
dy =

1
dy
dx

. The generalization of this

theorem into the multivariable domain essentially provides for fraction-like
behavior within the first derivative.

Likewise, in preparation for integration, both sides of the equation can be
multiplied by dx. Even in multivariate equations, differentials can essentially
be multiplied and divided freely, as long as the manipulations are dealing with
the first derivative.

Even the chain rule goes along with this. Let x depend on parameter u.
If one has the derivative dy

du and multiplies it by the derivative du
dx then the

result will be dy
dx . This is identical to the chain rule in Lagrangian notation.

It is well recognized that problems occur when if one tries to extend this
technique to the second derivative [6]. Take for a simple example the function

y = x3. The first derivative is dy
dx = 3x2. The second derivative is d2y

dx2 = 6x.
Say that it is later discovered that x is a function of t so that x = t2. The

problem here is that the chain rule for the second derivative is not the same
as what would be implied by the algebraic representation.

Here we arrive at one of the major problematic points for using the current
notation of the second derivative algebraically. To demonstrate the problem
explicitly, if one were to take the second derivative seriously as a set of al-

gebraic units, one should be able to multiply d2y
dx2 by dx2

dt2
to get the second

derivative of y with respect to t. However, this does not work. If the differ-

entials are being treated as algebraic units, then dx2

dt2
is the same as

(
dx
dt

)2
,

which is just the first derivative of x with respect to t squared. The first
derivative of x with respect to t is dx

dt = 2t. Therefore, treating the second
derivative algebraically would imply that all that is needed to do to convert
the second derivative of y with respect to x into the second derivative of y

with respect to t is to multiply by (2t)2.

However, this reasoning leads to the false conclusion that d2y
dt2
= 24t4. If,

instead, the substitution is done at the beginning, it can be easily seen that
the result should be 30t4:

y = x3

x = t2

y = (t2)3

y = t6

y′ = 6t5

y′′ = 30t4

This is also shown by the true chain rule for the second derivative, based
on Faà di Bruno’s formula [4]. This formula says that the chain rule for the
second derivative should be:

d2y

dt2
=

d2y

dx2

(
dx
dt

)2
+

dy

dx
d2x
dt2

(1)
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This, however, is extremely unintuitive, and essentially makes a mockery out
of the concept of using the differential as an algebraic unit.

It is generally assumed that this is a problem for the idea that second
differentials should be treated as algebraic units. However, it is possible that
the real problem is that the notation for second differentials has not been
given as careful attention as it should.

The habits of mind that have come from this have even affected nonstan-
dard analysis, where, despite their appreciation for the algebraic properties
of differentials, have left the algebraic nature of the second derivative either
unexamined (as in [3]) or examined poorly (i.e., leaving out the problematic
nature of the second derivative, as in [5, pg. 4]).

3 A Few Notes on Differential Notation

Most calculus students glaze over the notation for higher derivatives, and few
if any books bother to give any reasons behind what the notation means. It
is important to go back and consider why the notation is what it is, and what
the pieces are supposed to represent.

In modern calculus, the derivative is always taken with respect to some
variable. However, this is not strictly required, as the differential operation
can be used in a context-free manner. The processes of taking a differential
and solving for a derivative (i.e., some ratio of differentials) can be separated
out into logically separate operations.2

In such an operation, instead of doing d
dx (taking the derivative with re-

spect to the variable x), one would separate out performing the differential

2The idea that finding a differential (i.e., similar to a derivative, but not being with re-
spect to any particular variable) can be separated from the operation of finding a derivative
(i.e., differentiating with respect to some particular variable) is considered an anathema
to some, but this concept can be inferred directly from the activity of treating derivatives
as fractions of differentials. The rules for taking a differential are identical to those for
taking an implicit derivative, but simply leaving out dividing the final differential by the
differential of the independent variable.

For those uncomfortable with taking a differential without a derivative (i.e., without
specifying an independent variable), imagine the differential operator d() as combining the
operations of taking an implicit derivative with respect to a non-present variable (such as
q) followed by a multiplication by the differential of that variable (i.e., dq in this example).
So, taking the differential of ex is written as d(ex ) and the result of this operation is ex dx.
This is the same as if we had taken the derivative with respect to the non-present variable
q and then multiplied by dq. So, for instance, taking the differential of the function ex ,
the operation would start out with a derivative with respect to q d

dq (e
x ) = ex dx

dq followed

by a multiplication by dq, yielding just ex dx.
Doing this yields the standard set of differential rules, but allows them to be applied

separately from (and prior to) a full derivative. Also note that because they have no de-
pendency on any variable present in the equation, the rules work in the single-variable and
multi-variable case. Solving for a derivative is then merely solving for a ratio of differentials
that arise after performing the differential. It unifies explicit and implicit differentiation
into a unified process that is easier to teach, use, and understand, and requires few if any
special cases, save the standard requirements of continuity and smoothness.
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and dividing by dx as separate steps. Originally, in the Leibnizian concep-
tion of the differential, one did not even bother solving for derivatives, as
they made little sense from the original geometric construction of them [1,
pgs. 8, 59].

For a simple example, the differential of x3 can be found using a basic
differential operator such that d(x3) = 3x2 dx. The derivative is simply the

differential divided by dx. This would yield d(x3)

dx = 3x2.
For implicit derivatives, separating out taking the differential and finding

a particular derivative greatly simplifies the process. Given a function (say,
z2 = sin(q)), the differential can be applied to both sides just like any other
algebraic manipulation:

z2 = sin(q)

d(z2) = d(sin(q))

2z dz = cos(q)dq

From there, the equation can be manipulated to solve for dz
dq or dq

dz , or it can
just be left as-is.

The basic differential of a variable is normally written simply as d(x) = dx.
In fact, dx can be viewed merely a shorthand for d(x).

The second differential is merely the differential operator applied twice
[1, pg. 17]:

d(d(x)) = d(dx) = d2x (2)

Therefore, the second differential of a function is merely the differential op-
erator applied twice. However, one must be careful when doing this, as the
product rule affects products of differentials as well.

For instance, d(3x2 dx) will be found using the product rule, where u = 3x2

and v = dx. In other words:

d(3x2 dx) = 3x2(d(dx)) + d(3x2)dx

= 3x2 d2x + 6x dx dx

= 3x2 d2x + 6x dx2

The point of all of this is to realize that the notation d2y
dx2 is not some arbitrary

arrangement of symbols, but has a deep (if, as will be shown, slightly incorrect
or misleading) meaning. The notation means that the equation is showing
the ratio of the second differential of y (i.e., d(d(y))) to the square of dx (i.e.,
dx2).3

In other words, starting with y, then applying the differential operator

twice, and then dividing by dx twice, arrives at the result d2y
dx2 . Unfortunately,

that is not the same sequence of steps that happens when two derivatives are
performed, and thus it leads to a faulty formulation of the second derivative.

3In Leibniz notation, dx2 is equivalent to (dx)2. If the differential of x2 was wanted, it
would be written as d(x2). The rules are given in [1, pg. 24].
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4 Extending the Second Derivative’s Algebraic
Manipulability

As a matter of fact, order of operations is very important when doing deriva-
tives. When doing a derivative, one first takes the differential and then
divides by dx. The second derivative is the derivative of the first, so the
next differential occurs after the first derivative is complete, and the process
finishes by dividing by dx again.

However, what does it look like to take the differential of the first deriva-
tive? Basic calculus rules tell us that the quotient rule should be used:

d

(
dy

dx

)
=

dx(d(dy)) − dy(d(dx))
(dx)2

=
dx d2y − dy d2x

dx2

=
dx d2y

dx2
−

dy d2x
dx2

=
dx
dx

d2y

dx
−

dy

dx
d2x
dx

=
d2y

dx
−

dy

dx
d2x
dx

Then, for the second step, this can be divided by dx, yielding:

d
(
dy
dx

)
dx

=
d2y

dx2
−

dy

dx
d2x
dx2

(3)

This, in fact, yields a notation for the second derivative which is equally
algebraically manipulable as the first derivative. It is not very pretty or
compact, but it works algebraically.

The chain rule for the second derivative fits this algebraic notation cor-
rectly, provided we replace each instance of the second derivative with its full
form (cf. (1)):

d2y
dt2
−

dy
dt

d2x
dx2 =

(
d2y
dx2 −

dy
dx

d2x
dx2

) (
dx
dt

)2
+

dy
dx

(
d2x
dt2
− dx

dt
d2t
dt2

)
(4)

This in fact works out perfectly algebraically.
One objection that has been given to the present authors by early review-

ers about the formula presented in (3) is that the ratio d2x
dx2 reduces to zero.

However, this is not necessarily true. The concern is that, since dx
dx is always

1 (i.e., a constant), then d2x
dx2 should be zero. The problem with this concern

is that we are no longer taking d2x
dx2 to be the derivative of dx

dx . Using the

notation in (3), the derivative of dx
dx would be:

d
(
dx
dx

)
dx

=
d2x
dx2
−

dx
dx

d2x
dx2

(5)
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In this case, since dx
dx reduces to 1, the expression is obviously zero. However,

in (5), the term d2x
dx2 is not itself necessarily zero, since it is not the second

derivative of x with respect to x.

5 The Notation for the Higher Order Deriva-
tives

The notation for the third and higher derivatives can be found using the same
techniques as for the second derivative. To find the third derivative of y with
respect to x, one starts with the second derivative and takes the differential:

d
©«

d
(
dy
dx

)
dx

ª®®¬
= d

(
d2y

dx2
−

dy

dx
d2x
dx2

)
= d

(
dx d2y − dy d2x

dx3

)
=
(dx3)(d(dx d2y − dy d2x)) − (dx d2y − dy d2x)(d(dx3))

(dx3)2

=
d3y

dx2
−

dy

dx
d3x
dx2
− 3

d2x
dx2

d2y

dx
+ 3

dy

dx
(d2x)2

dx3

Finally, this result is divided by dx:

d

(
d
(
dy
dx

)
dx

)
dx =

d3y
dx3 −

dy
dx

d3x
dx3 − 3d2x

dx2

d2y
dx2 + 3dy

dx
(d2x)2

dx4 (6)

This expression includes a lot of terms not normally seen, so some expla-
nation is worthwhile. In this expression, d2x represents the second differen-
tial of x, or d(d(x)). Therefore, (d2x)2 represents (d(d(x)))2. Likewise, dx4

represents (d(x))4.

Because the expanded notation for the second and higher derivatives is
much more verbose than the first derivative, it is often useful to adopt a
slight modification of Arbogast’s D notation (see [2, pgs. 209,218–219]) for
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the total derivative instead of writing it as algebraic differentials:4

D2
x y =

d2y

dx2
−

dy

dx
d2x
dx2

(7)

D3
x y =

d3y

dx3
−

dy

dx
d3x
dx3
− 3

d2x
dx2

d2y

dx2
+ 3

dy

dx
(d2x)2

dx4
(8)

This gets even more important as the number of derivatives increases. Each
one is more unwieldy than the previous one. However, each level can be
interconverted into differential notation as follows:

Dn
x y =

d(Dn−1
x y)

dx
(9)

The advantages of Arbogast’s notation over Lagrangian notation are that
(1) this modification of Arbogast’s notation clearly specifies both the top
and bottom differential, and (2) for very high order derivatives, Lagrangian
notation takes up n superscript spaces to write for the nth derivative, while
Arbogast’s notation only takes up log(n) spaces.

Therefore, when a compact representation of higher order derivatives is
needed, this paper will use Arbogast’s notation for its clarity and succinct-
ness.5

6 Swapping the Independent and Dependent
Variables

In fact, just as the algebraic manipulation of the first derivative can be used
to convert the derivative of y with respect to x into the derivative of x with
respect to y, combining it with Arbogast’s notation for the second derivative

4The difference between this notation and that of Arbogast is that we are subscripting
the D with the variable with which the derivative is being taken with respect to. Addition-
ally, we are always supplying in the superscript the number of derivatives we are taking.
Therefore, where Arbogast would write simply D, this notation would be written as D1

x .
5It may be surprising to find a paper on the algebraic notation of differentials using a

non-algebraic notation. The goal, however, is to only use ratios when they act as ratios.
When writing a ratio that works like a ratio is too cumbersome, we prefer simply avoiding
the ratio notation altogether, to prevent making unwarranted leaps based on notation that
may mislead the intuition.
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can be used to generate the formula for doing this on the second derivative:

D2
x y =

d2y

dx2
−

dy

dx
d2x
dx2

D2
x y

dx3

dy3
=

d2y

dx2
dx3

dy3
−

dy

dx
d2x
dx2

dx3

dy3

D2
x y

(
dx
dy

)3
=

d2y

dy2
dx
dy
−

d2x
dy2

−D2
x y

(
dx
dy

)3
=

d2x
dy2
−

dx
dy

d2y

dy2

−D2
x y

(
1
dy
dx

)3
=

d2x
dy2
−

dx
dy

d2y

dy2

−D2
x y

(
1

D1
x y

)3
=

d2x
dy2
−

dx
dy

d2y

dy2

It can be seen that this final equation is the derivative of x with respect to
y. Therefore, it can generally be stated that the second derivative of y with
respect to x can be transformed into the second derivative of x with respect
to y with the following formula:

−D2
x y

(
1

D1
x y

)3
= D2

y x (10)

To see this formula in action on a simple equation, consider y = x3. Perform-
ing two derivatives gives us:

y = x3 (11)

D1
x y = 3x2 (12)

D2
x y = 6x (13)

According to (10), D2
y x (or, x ′′ in Lagrangian notation) can be found by

performing the following:

D2
y x = −(6x)

(
1

3x2

)3
=
−6x
27x6

=
−2

9
x−5 (14)
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This can be checked by taking successive derivatives of the inverse function
of (11):

x = y
1
3

D1
y x =

1

3
y
−2
3

D2
y x = −

2

9
y
−5
3 (15)

(15) can be seen to be equivalent to (14) by substituting for y using (11):

D2
y x = −

2

9
(x3)

−5
3

= −
2

9
x−5 (16)

This is the same result achieved by using the inversion formula (cf. (10)).

7 Using the Inversion Formula for the Second
Derivative

While the inversion formula (cf. (10)) is not original, it is a tool that many
mathematicians are unaware of, and is rarely considered for solving higher-
order differentials.6

As an example of how to apply (10), consider second order ordinary non-
linear differential equations of the form

F (y′′, y′, y) = 0.

Equations of this form can be solved implicitly for

F (a, b, c) = a − b3 f (c)

for generic function f . Indeed, consider the equation

D2
x y = f (y)

(
dy

dx

)3
. (17)

Then, by virtue of (10) we derive

D2
y x = − f (y).

6The authors of this paper, as well as several early reviewers, had originally thought
that the inversion formula was a new finding. Again, that is the usefulness of the notation.
Specific formulas such as the inversion formula do not need to be taught, as they simply
flow naturally out of the notation. Even though the inversion formula is not new with this
paper, showing how the present authors were able to use it to good benefit demonstrates
the benefit of an improved notation—practitioners needs not memorize endless formulas,
but they can be developed straightforwardly as needed based upon basic intuitions.
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Integration of this equation with respect to y twice will provide with

x(y) = −
∫ ∫

f (y)dy dy. (18)

For simplicity, let
f (y) = y,

so that (17) is reduced to

D2
x y = y

(
dy
dx

)3
,

the real exact solutions of which is

y(x) =
6 3
√

2c1

3

√
162(x + c2) +

√
23328c31 + [162(x + c2)]2

−

−

3

√
162(x + c2) +

√
23328c31 + [162(x + c2)]2

3 3
√

2

(19)

Here c1 and c2 are integration constants that must be determined from given
boundary or Cauchy conditions.

On the other hand, (18) results in

x(y) =
y3

6
+ c1y + c2,

the real inverse of which exactly coincides with (19).

8 Relationship to Historic Leibnizian Thought

The view of differentials presented by Leibniz and those following in his
footsteps differed significantly from the modern-day view of calculus. The
modern view of calculus focuses on functions, which have defined independent
and dependent variables. The Leibniz view, however, according to [1], is a
much more geometric view. There is no preferred independent or dependent
variable.

The modern concept of the derivative generally implies a dependent and
an independent variable. The numerator is the dependent variable and the
denominator is the independent variable. In the geometric view, however,
there are only relationships, and these relationships do not necessarily have
an implied dependency relationship.

Therefore, Leibnizian differentiation doesn’t occur with respect to any in-
dependent variable. There is no preferred independent variable. Likewise, as
we have seen in Sections 6 and 7, the version of the differential presented here
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allows for the reversal of variable dependency relationships. Similarly, the
procedure of differentiation given in Section 3 which allows us to formulate
the new notation for the second derivative given in (3) follows the Leibnizian
methodology, where the differentiation is done mechanically without consid-
ering variable dependencies.

Leibniz did, however, consider certain kinds of variables which map very
directly to what we would consider as “independent” variables. In the Leibniz
conception, what we would consider an “independent” variable is a variable
whose first derivative is considered constant. This leads to numerous sim-
plifications of differentials because, if a differential is constant, by standard
differential rules its differential is zero. Therefore, if x is the independent
variable (using modern terminology) then that implies that dx is constant.
If dx is a constant (even if it is an infinitely small, unknowable constant), then
that means that its differential is zero. Therefore, d2x and higher differentials
of x reduce to zero, simplifying the equation.7

As an example, given the equation

xy = 3

the first differential of this would be given by

x dy + y dx = 0

and the second differential of this would be given by

x d2y + 2 dx dy + y d2x = 0.

Then, you could simplify the equation by choosing any single differential
to hold constant. This is referred to in Leibnizian thought as choosing a
“progression of variables,” and it is identical to choosing an independent
variable [1, pg. 71]. Therefore, if one chooses x as the independent variable,
then dx is constant, and therefore d2x = 0. Thus, the equation reduces to

x d2y + 2 dx dy = 0.

However, if y is the independent variable, then dy is held constant and there-
fore its differential, d2y = 0. This leads to the equation

2 dx dy + y d2x = 0.

7As a way of understanding this, imagine the common independent variable used in
physics, especially prior to relativity—time. Especially consider the way that time flows
in a pre-relativistic era. It flows in a continual, constant fashion. Therefore, if the flow of
time (i.e., dt) is constant, then by the rules of differentiation the second differential of time
must be zero. Thus, an independent variable is one which acts in a similar fashion to time.
Another way to consider this is to consider the independence of the independent variable.
It’s changes (i.e., differences) are, by definition, independent of anything else. Therefore,
we may not assign a rule about the differences between the values. Thus, because there
is no valid rule, the second differential may not be zero, but it is at most undefinable by
definition.
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This understanding explains the success of the modern notation of the second
derivative. The notation given in (3) is

D2
x =

d2y

dx2
−

dy

dx
d2x
dx2
.

However, if we assume that x is truly the independent variable, then this
means that d2x = 0 and therefore the whole expression dy

dx
d2x
dx2 reduces to 0

as well. This reduces (3) to the modern notation of d2y
dx2 . Additionally, if we

take the assumption that x is the independent variable, then the problems
identified in Section 2 disappear, because x, as an independent variable,
cannot then be dependent on t.8

In addition to (3) being reducible to d2y
dx2 under the assumption that x is

the independent variable, the Leibnizian view also gives a set of tools that

allows us to reinflate instances of d2y
dx2 into (3). Euler showed that, given an

equation from a specific “progression of variables” (i.e., a particular choice
of an independent variable), we can modify that equation in order to see
what it would have been if no choice of independent variable had been made.
According to [1, pg. 75], the substitution for reinflating a differential from
a particular progression of variables (i.e., a particular independent variable)
into one that is independent of the progression of variables (i.e., no inde-
pendent variable chosen), an expansion practically identical to (3) can be
used.

9 Future Work

The notation presented here provides for a vast improvement in the ability
for higher order differentials to be manipulated algebraically.

This improved notation yields several potential areas for study. These
include:

1. developing a general formula for the algebraic expansion of higher
derivatives,

2. identifying additional second order differential equations that are solv-
able by swapping the dependent and independent variable,

3. finding other ways that differential equations can be rendered solvable
using insights from the new notation,

4. finding further reductions in special formulas that can be rendered by
using algebraically manipulable notations,

8To be clear, there is nothing preventing someone from making an independent variable
dependent on a parameter. However, doing so then brings them around to needing to use
the form of the second derivative defined here (which does not presume a particular choice
of independent variable), or a compensating mechanism such as Faà di Bruno’s formula.
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5. extending this project to allow partial differentials to be algebraically
manipulable.
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