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Abstract. This paper is devoted to the existence and uniqueness results for fractional

differential equations with infinite delay and the Riemann-Liouville fractional derivative

order. The technique used to prove our results is by the Banach contraction principle and

Schauder’s fixed point theorem.
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1 Introduction

Recent studies in mechanics, chemistry, engineering, physics, biological sci-
ences and other areas have attracted a considerable interest of researchers
and scientists and also these studies have shown that the dynamics of many
systems are described more accurately using fractional delay differential equa-
tions [2, 3, 6, 7, 8, 10, 17, 18, 19, 23, 25], that are often more realistic to
describe natural phenomena than those without delay [5, 9, 11, 12, 24], and
the references therein. For more details, see the monographs of Abbas et al.
[1], Hale [14], Hino [15], Kilbas et al. [16], and Samko et al. [22], Miller
and Ross [20], Podlubny [21]. Many authors have addressed studying these
equations with finite delay, for example in [23], Ye et al., investigated the
existence and uniqueness of a positive solution for some class of differential
equation with fractional order and with finite delay

Dα[y(t)− y(0)] = y(t)f(t, yt), t ∈ [0, T ], (1)

y(t) = φ(t), t ∈ [−τ, 0], (2)

where 0 < α < 1, Dα
0 is the standard Riemann-Liouville fractional derivative,

φ ∈ C , φ(0) = 0, C is the space of continuous function from [−τ, 0] to R+and
f : [0, T ]× C −→ R+ (T > 0) is continuous.


