Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 26 (2019) 123-132 Copyright ©2019 Watam Press

THE L^1 STABILITY TO A GENERALIZED BENJAMIN-BONA-MAHONY-BURGERS MODEL

Chong Lai^{1*}, Rui Li¹, Kexin Luo²

¹Department of Mathematics and Statistics Curtin University, Perth, Australia

²The School of Mathematical and Software Science Sichuan Normal University, Chengdu, China

Abstract. We investigate the stability of solutions for a nonlinear equation which includes the classic Benjamin-Bona-Mahony-Burgers equation. Applying the Kruzkov's techniques of doubling the space variables and assuming that the initial data belong to the space $L^1(R) \cap H^1(R)$, we establish the $L^1(R)$ stability of the strong solutions for the nonlinear equation. Moreover, the uniqueness of strong solutions to the equation is acquired.

Keywords. A generalized *BBMB* equation; Strong solutions; $L^1(R)$ stability; Uniqueness; Nonlinear equation.

AMS (MOS) subject classification: 35G25;35L05.

1 Introduction and main results

This work investigates the following nonlinear generalized Benjamin-Bona-Mahony-Burgers equation (GBBMB)

$$v_t - v_{txx} - av_{xx} + bv_x + v^p v_x + kv_{xxx} = 0$$
, constant $a > 0$, (1)

where constant b and k are arbitrary, and $p \ge 1$ is an integer. If k = 0, Eq.(1) is turned into the nonlinear Benjamin-Bona-Mahony-Burgers equation

$$v_t - v_{txx} - av_{xx} + bv_x + v^p v_x = 0.$$
 (2)

Letting a = 0, b = 1, p = 1 and k = 0, Eq.(1) becomes the Benjamin-Bona-Mahony model

$$v_t - v_{txx} + v_x + vv_x = 0, (3)$$

which is a long wave equation (see [1, 2]). Eq.(3) is usually regarded as an alternative model to the KdV equation which has dynamic properties of weakly long dispersive waves [3]. As pointed out in Mei [4], Eq.(2) is derived if the good predictive power is desired in the physical sense. The dispersive

^{*}Corresponding author. Email address: laichong1991716@gmail.com