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Abstract. We investigate the stability of solutions for a nonlinear equation which includes

the classic Benjamin-Bona-Mahony-Burgers equation. Applying the Kruzkov’s techniques

of doubling the space variables and assuming that the initial data belong to the space

L1(R) ∩H1(R), we establish the L1(R) stability of the strong solutions for the nonlinear

equation. Moreover, the uniqueness of strong solutions to the equation is acquired.

Keywords. A generalized BBMB equation; Strong solutions; L1(R) stability; Unique-

ness; Nonlinear equation.

AMS (MOS) subject classification: 35G25;35L05.

1 Introduction and main results

This work investigates the following nonlinear generalized Benjamin-Bona-
Mahony-Burgers equation (GBBMB)

vt − vtxx − avxx + bvx + vpvx + kvxxx = 0, constant a > 0, (1)

where constant b and k are arbitrary, and p ≥ 1 is an integer. If k = 0, Eq.(1)
is turned into the nonlinear Benjamin-Bona-Mahony-Burgers equation

vt − vtxx − avxx + bvx + vpvx = 0. (2)

Letting a = 0, b = 1, p = 1 and k = 0, Eq.(1) becomes the Benjamin-Bona-
Mahony model

vt − vtxx + vx + vvx = 0, (3)

which is a long wave equation (see [1, 2]). Eq.(3) is usually regarded as an
alternative model to the KdV equation which has dynamic properties of
weakly long dispersive waves [3]. As pointed out in Mei [4], Eq.(2) is derived
if the good predictive power is desired in the physical sense. The dispersive
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