ON THE POLYNOMIAL SOLUTIONS OF GENERALIZED RICCATI EQUATIONS

Claudia Valls
Departamento de Matemática, Instituto Superior Técnico Universidade Técnica de Lisboa
Av. Rovisco Pais 1049-001, Lisboa, Portugal email:cvalls@math.ist.utl.pt

Abstract

Consider generalized polynomial Riccati differential equations of the form $a(x) y^{m} \dot{y}=b_{0}(x)+b_{1}(x) y+b_{2}(x) y^{2}$ with all the involved functions being polynomials of degree at most d, and with $m \in\{1,2\}$. We give the polynomial solutions that they can have.

Keywords:Riccati polynomial differential equations, polynomial solutions

AMS(MOS) subject classification:34C05, 34C07, 34C08

1 Introduction and statement of the results

Generalized polynomial Riccati differential equations of the form

$$
\begin{equation*}
a(x) y^{m} \dot{y}=b_{0}(x)+b_{1}(x) y+b_{2}(x) y^{2} \tag{1}
\end{equation*}
$$

(here the dot denotes derivative with respect to the independent variable x and $m \geq 0$), appear in all text books of ordinary differential equations as examples of nonlinear equations and in many mathematical and applied problems, see $[5,6,7]$ and the references therein.

The main motivation of this paper comes from the works of $[1,2]$, where the authors present examples of polynomial Riccati differential equations (with $m=0$ and with degrees at most four of the polynomials a, b, b_{1}, b_{2}), having 4 and 5 polynomial solutions. We want to study the maximum number of polynomial solutions that a generalized Riccati differential equation can have. When $m=0, a(x)$ is constant and $b_{2} \neq 0$, it was proved in [4] that equation (1) has at most 2 polynomial solutions and that this bound is sharp. If $m=0$ and $a(x)$ is non-constant with $b_{2} \neq 0$ it was proved in [3] that if we denote by $d:=\max \left\{\alpha_{i}\right\}$ being α_{i} the degrees of $a(x), b_{0}(x), b_{1}(x), b_{2}(x)$, respectively, then equation (1) has at most $d+1$ (resp. 2) polynomial solutions when $d \geq 1$ (resp. $d=0$) and the bounds are sharp. To the best of our knowledge the question of knowing the number of polynomial solutions of a Riccati

