HYPERBOLIC QUASIPERIODIC SOLUTIONS OF U-MONOTONE SYSTEMS ON REIMANNIAN MANIFOLDS

Igor O. Parasyuk ${ }^{1}$
${ }^{1}$ Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 0 1601, Ukraine e-mail: pio@univ.kiev.ua

Abstract

We consider a time-quasiperiodic Newtonian equation of motion on a Riemannian manifold. The main results concerns the following issues: (a) the existence of a solution taking values in a given bounded domain of configuration space and possessing a bounded derivative; (b) the hyperbolicity of such a solution; (c) the uniqueness and, as a consequence, the quasiperiodicity of such a solution. Our approach exploits ideas of Wazewski topological principle. We use an auxiliary convex function U to introduce the notion of U-monotonicity for the system. The U-monotonicity property of the system implies the uniqueness and the quasiperiodicity of its bounded solution. The results obtained are applied to study the motion of a charged particle on a unite sphere under the action of time-quasiperiodic electric and magnetic fields.

Keywords. Newtonian equation of motion; Quasiperiodic solution; Riemannian manifold; Monotone system; Exponential dichotomy.
AMS subject classification:Primary: 34C40; 34C27; 37C65; Secondary: 34C12; 34C46; 37C55.

1 Introduction

Let $(\mathcal{M},\langle\cdot, \cdot\rangle)$ be a smooth complete connected m-dimensional Riemannian manifold with metric tensor $\mathfrak{g}=\langle\cdot, \cdot\rangle$, and let ∇ be the Levi - Civita connection with respect to \mathfrak{g}. For a given smooth mapping $x(\cdot): I \mapsto \mathcal{M}$ of an interval $I \subset \mathbb{R}$, denote by $\nabla_{\dot{x}} \dot{x}(t)$ the covariant derivative of tangent vector field $\dot{x}(\cdot): I \mapsto T \mathcal{M}$ along $x(\cdot)$ at the point $t \in I$. Here $T \mathcal{M}=\bigsqcup_{x \in \mathcal{M}} T_{x} \mathcal{M}$ stands for the total space of the tangent bundle with natural projection $\pi(\cdot): T \mathcal{M} \mapsto \mathcal{M}$, and $T_{x} \mathcal{M}=\pi^{-1}(x)$ denotes the tangent space to \mathcal{M} at x.

This paper aims to study a time-quasiperiodic second-order system

$$
\begin{equation*}
\nabla_{\dot{x}} \dot{x}=f(t \omega, x) \tag{1}
\end{equation*}
$$

