# A NUMERICAL APPROACH TO SOLVE QUADRATIC CALCULUS OF VARIATION PROBLEMS 

Ahmed Bokhari ${ }^{1}$, Abdessamad Amir ${ }^{2}$ and Sidi Mohamed Bahri ${ }^{3}$<br>${ }^{1}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, Algeria<br>${ }_{1,2,3}$ Laboratory of Applied and Pure Mathematics, Mostaganem University, Algeria


#### Abstract

Several problems in calculus of variations can posses a quadratic integrand or can be approximated by a quadratic function. This paper presents a numerical scheme to solve the quadratic calculus of variations problem. The Legendre wavelets operational matrix of derivative is used to reduce this problem to a static quadratic programming, which allows us to deal with large-scale problems. Illustrative numerical tests are included to demonstrate the efficiency and applicability of the technique. Numerical comparison is also given with others method from the state-of-the-art. The formulation presented is simple and can be naturally extended to nonlinear calculus of variations problems.


Keywords. Calculus of variations, Legendre wavelets, Quadratic programming, Operational matrix of derivative, Active-set method.

AMS (MOS) subject classification: 90C20, 42C40, 41A30.

## 1 Introduction

Let $\mathcal{L}$ be a real valued function defined on $[0,1] \times C_{\left([0,1], R^{n}\right)}^{1} \times C_{\left([0,1], R^{n}\right)}^{0}$. The calculus of variations problem is the problem of finding the extremum of the functional

$$
\begin{equation*}
J=\int_{0}^{1} \mathcal{L}(t, x(t), \dot{x}(t)) d t \tag{1}
\end{equation*}
$$

with some boundary conditions

$$
\begin{equation*}
\left(x(0)=A_{1} \text { or } \quad \dot{x}(0)=B_{1}\right) \quad \text { and } \quad\left(x(1)=A_{2} \text { or } \quad \dot{x}(1)=B_{2}\right), \tag{2}
\end{equation*}
$$

In this paper we are interested by the numerical solution of this problem, when the integrand function $\mathcal{L}$ is quadratic, i.e;

$$
\begin{equation*}
\mathcal{L}(t, x(t), \dot{x}(t))=v^{\top}(t) H v(t) \tag{3}
\end{equation*}
$$

