Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 25 (2018) 369-395 Copyright ©2018 Watam Press

ON SPLIT EQUALITY MIXED EQUILIBRIUM AND FIXED POINT PROBLEMS FOR COUNTABLE FAMILIES OF GENERALIZED K_I- STRICTLY PSEUDO-CONTRACTIVE MULTI-VALUED MAPPINGS

H.A. Abass, C.C. Okeke and O.T. Mewomo

School of Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban, South Africa.

Abstract. In this paper, we introduce an iterative algorithm for finding a common solution of multiple-set split equality mixed equilibrium problem and fixed point problem for countably infinite families of generalized k_i - strictly pseudo-contractive multi-valued mappings in real Hilbert spaces. Using our iterative algorithm, we obtain a weak and a strong convergence results for approximating the common solution of the aforementioned problems. Some applications were also given. Our results complements and extends some related results in literature.

Keywords. split equality mixed equilibrium problem; generalized k_i strictly pseudocontractive mapping; multi-valued mappings; iterative scheme; Fixed point problem .

AMS (MOS) subject classification: 2000 : 47H06, 47H09, 47J05, 47J25.

1. INTRODUCTION

Definition 1.1. Let H be a real Hilbert space and CB(H) be the collection of all nonempty closed and bounded subsets of H, then the Hausdorff metric \mathcal{H} on CB(H) is defined by:

$$\mathcal{H}(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\},\$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

Definition 1.2. Let $T : H \to CB(H)$ be a multi-valued mapping. An element $x \in H$ is said to be a fixed point of T if $x \in T(x)$.

Definition 1.3. Let K be a nonempty subset of a Hilbert space H. A map $T: K \to H$ is called pseudo-contractive if there exists $k \in [0, 1)$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + k||(x - Tx) - (y - Ty)||^{2}, \quad \forall x, y \in K.$$

Definition 1.4. [17] Let H be a real Hilbert space and D a nonempty, open and convex subset of H. Let $T : \overline{D} \to CB(\overline{D})$ be a mapping. Then T is called