OSCILLATION AND ASYMPTOTIC BEHAVIOR OF ODD ORDER DELAY AND ADVANCED TYPE NEUTRAL DIFFERENTIAL EQUATIONS

B. Rani ${ }^{1}$, S. Selvarangam ${ }^{2}$, M. Madhan ${ }^{3}$ and *E. Thandapani ${ }^{4}$
1,2,3 Department of Mathematics, Presidency College, Chennai - 600 005, India.
${ }^{4}$ Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India.

Abstract

In this paper, we study the oscillation of odd order nonlinear neutral differential equation of the form $$
\left(x(t)+a x\left(t-\tau_{1}\right)+b x\left(t+\tau_{2}\right)\right)^{(n)}+p(t) x^{\alpha}\left(t-\sigma_{1}\right)+q(t) x^{\beta}\left(t+\sigma_{2}\right)=0, t \geq t_{0}>0
$$ where $n \geq 3$ is an odd integer, using arithmetic-geometric mean inequality. Examples are provided to illustrate the main results.

Keywords. Odd order, nonlinear neutral differential equation, oscillation, asymptotic behavior.
AMS subject classification: $34 \mathrm{C} 10,34 \mathrm{~K} 11$.

1 Introduction

In this paper, we study the oscillation and asymptotic of odd order nonlinear neutral differential equation of the form
$\left(x(t)+a x\left(t-\tau_{1}\right)+b x\left(t+\tau_{2}\right)\right)^{(n)}+p(t) x^{\alpha}\left(t-\sigma_{1}\right)+q(t) x^{\beta}\left(t+\sigma_{2}\right)=0, t \geq t_{0}>0$,
where $n \geq 3$ is an odd integer, under the following conditions:
$\left(C_{1}\right) p(t)$ and $q(t)$ are continuous real valued functions on $\left[t_{0}, \infty\right)$;
$\left(C_{2}\right) a, b, \tau_{1}, \tau_{2}, \sigma_{1}$ and σ_{2} are nonnegative constants;
$\left(C_{3}\right) \alpha$ and β are the ratios of odd positive integers.
By a solution of equation (1.1), we mean a continuous real valued function $x(t)$ on $\left[T_{x}, \infty\right), T_{x} \geq t_{0}$, which is continuously n-times differentiable function on $\left[T_{x}, \infty\right)$ and satisfying the equation (1.1) for all $T_{x} \geq t_{0}$. We consider only those solutions $x(t)$ of equation (1.1) which satisfy $\sup \{|x(t)| ; t \geq T\}>0$ for all $T \geq T_{x}$. Also we assume that equation (1.1) possesses such solutions.

A nontrivial solution of a differential equation is said to be oscillatory if it has infinitely many zeros and nonoscillatory otherwise. A nontrivial solution of a differential equation is said to be almost oscillatory if it is either

