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Abstract. Let n ∈ N, n ≥ 3. For α ∈ (n − 1, n], we obtain the existence of positive

solutions of the singular fractional differential equation Dα
0+
u + f(t, u) = 0, 0 < t < 1,

satisfying the boundary conditions u(i)(0) = 0, i = 0, . . . , n − 2, Dβ
0+
u(1) = 0, where

β ∈ [1, n − 1]. Here f is singular at u = 0, t = 0, t = 1, and possibly at u = ∞, and is

decreasing in its space variable u. The main tool in the analysis is the Gatica, Oliker, and

Waltman fixed point theorem.
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1. Introduction

Let n ∈ N, n ≥ 3. For α ∈ (n − 1, n], consider the singular fractional
differential equation

(1.1) Dα
0+u+ f(t, u) = 0, 0 < t < 1,

satisfying the boundary conditions

(1.2) u(i)(0) = 0, i = 0, . . . , n− 2, Dβ
0+u(1) = 0,

where β ∈ [1, n − 1], Dα
0+ , Dβ

0+ are the Riemann-Liouville fractional deriva-
tives of order α and β, respectively, and f(t, u) is singular at t = 0, t = 1,
u = 0, and possibly at u =∞. Here, we assume

(H1) f(t, u) : (0, 1)× (0,∞)→ (0,∞) is continuous;
(H2) f(t, u) is decreasing in u for each t; and
(H3) lim

u→0+
f(t, u) =∞ and lim

u→∞
f(t, u) = 0, uniformly on compact subsets

of (0, 1).

Singular fractional boundary value problems have been studied at length
in recent years. In [1], using Krasnosel’skii’s fixed point theorem [8], Agarwal,
O’Regan, and Staněk obtained the existence of at least one positive solution


