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Abstract. Hydrocephalus is a clinical condition that has afflicted human beings since

time immemorial. Over the past two or three decades the interaction of mathematics and

medicine has contributed to significant advances in the treatment of hydrocephalus. Re-

cently a number of papers have applied poroelasticity theory to a simplified model of the

brain. These have generally assumed that the permeability of the brain parenchyma is

constant; however it has long been known that for other biological tissues (e.g. articular

cartilage) that permeability decreases exponentially with compression. Thus a question of

interest is how great an impact such variations might have on the pathogenesis and evo-

lution of hydrocephalus. The assumption of variable permeability renders the governing

equations nonlinear, and so we further simplify the cylindrical geometry to one dimension.

Analytical approximations are obtained in this context for displacements, pressure and

filtration velocity.

1 Introduction

Over the last three decades, considerable research effort has been directed
towards the study of the mechanical properties of the human brain, and of
its response to the hydrodynamic loading of the ventricular walls. This line
of research has been driven (in large part) by the desire of clinicians and
scientists to increase our understanding of the onset of hydrocephalus, as
well as the consequences and repercussions of traumatic brain injury. In this
paper, we will focus on the mathematical modelling of hydrocephalus, which
is a condition that occurs as a congenital problem in a significant portion of
live births. The condition arises as a result of the breakdown of the normal
cycle of formation and drainage of cerebrospinal fluid (CSF), so that there
is a build up of CSF in the central, lateral ventricles, resulting in increased
pressure that compresses the brain tissue against the skull. In pediatric
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cases, where the skull is not rigid this can frequently result in significant
deformation of the skull itself, in addition to brain tissue compression.

To be aware of the difficulty of the problem and the limitations of the
results, a more detailed knowledge of the condition itself is required. When
the cranio-spinal system functions normally, CSF is formed primarily in the
lateral ventricles and passes through channels into the third and fourth ven-
tricles and then into the subarachnoid space surrounding the brain and spinal
chord (see [2]). Although its specific functions are not well known, it is be-
lieved to play a multipurpose role in brain health and function, acting both as
a shock absorber to cushion the brain, as well as to provide nutrients and re-
move waste from the cranio-spinal system. After circulation, the CSF reaches
certain absorption sites and the system functions perfectly, provided the pro-
duction rate is balanced by the absorption rate. Hydrocephalus occurs when
some part of the circulatory system is obstructed, preventing the absorption
of the fluid (or resulting in a reduced absorption rate). Obstruction most
commonly arises as a result of congenital malformation, but may also result
from an injury, a hemorrhage, or a tumor. Hydrocephalus occurs in about
1.5% of live births, often in conjunction with meningomydocele, the most se-
vere form of spino bifida. Except in those rare cases in which the obstruction
can be removed surgically, hydrocephalus is incurable and treatment is prob-
lematic. Tremendous advances have been made over the past five decades,
and today the most common treatment is by way of a ventricular-peritoneal
shunt. CSF shunts have been so successful in the treatment of hydrocephalus
that currently there are over 500 types of shunts on the market. However,
there are problems with their use, and a prospective multi-centre, random-
ized clinical trial led by the Hospital for Sick Children, at the University of
Toronto, has shown that the shunt failure rate at two years is 50%, indepen-
dent of the shunt type (cf [3]). It thus seems clear, that further progress will
depend crucially on an improved understanding of the onset and development
of hydrocephalus, which in turn must rely on progress in our understanding
of the mechanics of the brain and the dynamics of CSF.

In contrast to ordinary materials of engineering interest, the brain is so
fragile that standard engineering tests to determine mechanical properties
cannot be used, which hinders the possibility of developing sound phenomeno-
logical models. A good illustration of the quandry we are faced with is offered
by the numerous models of CSF hydrodynamics published over the past five
decades (see [4], [5]). Although they have resulted in some criteria and mea-
sures (such as the pressure-volume index) useful to neurosurgeons, they all
have the fundamental weakness of being unable to describe the distribution
of stress and strain within the brain tissue or the configuration of the ven-
tricular walls in a hydrocephalic brain, and it is information of this nature
that is essential to make true progress in this field. Clearly, progress in hy-
drocephalus research will require much more realistic models. This means a
greater number of factors must be taken into consideration.

In the simplest possible description capable of predicting stress and strain
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distributions within the brain tissue, the human brain has been likened by
Hakim (cf. [6]) to a sponge formed of an incompressible, elastic solid whose
pores are filled with a viscous incompressible fluid (CSF). Adding to the
challenge of developing an appropriate model is the difficult geometry of the
brain, especially if we wish to accurately take into account the circulation
of the CSF around the spinal chord. Nagashima et al[7] were the first to
draw a parallel between Hakim’s proposed representation of the brain and
the problem of soil consolidation, the study of which was pioneered (decades
earlier) by Biot [1]. One version or another of Biot’s consolidation theory
has been the foundation for a number of subsequent works. The numerical
work of Nagashima et al [7] attempted to tackle the problem using a realistic
geometry but used questionable values of the brain’s physical parameters
and the appropriate boundary conditions were not applied. Subsequently
Tenti et al [9] and Stastna et al [8] attempted to address these problems
analytically and in a simplified geometry. These latter works provide the
direct motivation and basis for this paper. Since Biot’s consolidation theory
is well known, we forgo a detailed presentation of it here, and refer the reader
to [10] instead.

2 Mathematical Model

Following [9], we introduce the governing equations for the system we will
examine. Inertia forces associated with seepage are neglected since the typical
Reynolds number based on pore size is much less than one. Body forces
are also neglected so that in Cartesian coordinates, and using the Einstein
summation convention, the equation of motion reduces to,

∂Tij
∂xj

= 0 for i, j = 1, 2, 3. (2.1)

Here Tij is the total stress tensor:

Tij = −pδij + τij (2.2)

where p represents the pore fluid pressure, and τij is Terzaghi’s effective
stress, which in the linear approximation (for small strain and for incom-
pressible constituents) is related to the strain by:

τij = λekkδij + 2µeij . (2.3)

The strain tensor is, in turn, given by

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

where the ui are the components of the displacement vector. Although the
equations appear to be similar in form to the constitutive equations of clas-
sical linear elasticity theory, a caveat to be kept in mind is that the Lamé
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like parameters λ and µ refer not to the properties of the solid matrix alone,
but to the properties of the homogenized (hypothetically averaged) mixture.

Defining the volume flux vector (following Kenyon, [10]) as

Vi = φv
(f)
i + (1− φ)v

(s)
i = Wi + v

(s)
i (2.5)

where v
(f)
i and v

(s)
i are averaged components of fluid and solid velocities,

respectively, φ is the pore fraction (pore volume divided by bulk volume)
and Wi is the filtration velocity (flow relative to the solid). The continuity
equation is then simply

∂Vi
∂xi

= 0 (2.6)

where we have assumed that both solid and liquid constituents are each
intrinsically incompressible. Note that the velocity of the solid is defined to
be the rate of change of the solid displacement vector with respect to time,
or

v
(s)
i =

∂ui
∂t

. (2.7)

The system of equations is closed by assuming the validity of Darcy’s Law,

Wi = −k
η

∂P

∂xi
(2.8)

where k is the permeability of the medium and η is the fluid’s coefficient of
viscosity.

Analyses of the case k =constant were presented in Tenti et al [9] and
Stastna et al [8] for both steady state and transient cases, respectively. The
boundary conditions in both of these papers were taken to be

p(R) = Pi

p(R+ ∆R) = P0 (2.9)

where R and R+∆R represent the inner and outer radii of a porous cylinder,
respectively, and Pi and Po are prescribed. The pressure gradient drives flow
through the porous, annular region. Stress equilibrium was also assumed to
hold on the boundaries of the annular region, so that

τrr(R) = τrr(R+ ∆R) = 0. (2.10)

The analyses of references [8] and [9] met with some success but raised ques-
tions as to the appropriateness of the assumption that the permeability k is
constant. An increase in intraventricular pressure would compress the brain
parenchyma and cause large, local strains initially. It seems reasonable to
consider the possibility that such strains would affect the permeability of the
bulk solid, in the case of the brain (although unfortunately there is no experi-
mental evidence to corroborate this). Nevertheless this kind of behaviour has
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been observed experimentally for human articular cartilage, where Holmes,
Lai and Mow [11] have shown (in uniaxial compressive stress relaxation ex-
periments) that permeability decreases exponentially with the magnitude of
compression, specifically,

k = k0 exp(MI∗) (2.11)

where k0 is the apparent (strain–free) permeability of the medium, I∗ is the
first invariant of the infinitesimal strain tensor and M is a constant.

The assumption of a nonlinear dependence of the permeability of biologi-
cal tissue upon strain renders the equations of consolidation theory nonlinear,
with attendant mathematical complications.

3 One dimensional model of hydrocephalus

We begin by setting our equations in a one dimensional context (analogous
to the three dimensional system we would ideally like to describe). In [12],
Parker et al performed an experiment which models the kind of filtration
behaviour we are interested in. Their experiment consisted of a highly flexible
open celled polyurethane foam placed in a perspex cylinder and saturated
with a mixture of glycerine and water (designed to produce large drag in
the foam without development of turbulence). The foam was confined at the
lower end by a filter composed of a perforated plate and a wire mesh, while
the upper end was left free to move under the influence of fluid pressure.
The rest of the apparatus was designed so that the pressure drop across the
foam could be controlled, and the resulting compression of the foam was
then observed. The physics should be closely analogous to what we believe
happens in the brain in fully developed hydrocephalus. Hence, the steady-
state results of such an experiment should be of interest to us, and we test
our mathematical model to ascertain how well the results agree with Parker
et al’s observations.

For ease of reference we repeat here the consolidation theory equations
in one dimensional form. The co-ordinate system is defined such that x = 0
corresponds to the position of the lower end of the foam. The initial position
of the top surface of the foam is taken to be x = L, while its position with
advancing time is given by x = h(t), see Figure 1. The equation of motion is

∂p

∂x
= α

∂2u

∂x2
(3.1)

where α = λ + 2µ and the Lamé like parameters λ and µ have their usual
(consolidation theory) meanings. This quantity is representative of the “stiff-
ness” of the solid matrix (somewhat analogous to the spring constant).

The continuity equation, assuming incompressibility of the individual con-
stituents, is given by

∂

∂x

(
w +

∂u

∂t

)
= 0 (3.2)
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Moving 
Upper Boundary

Saturated Foam

Pressure = F (t)

Pressure = 0

Fixed 
LowerBoundary

x = 0

x = H(t)

H(0) = L

Figure 1: Foam Compression Test Experiment.

and Darcy’s law

w = −k(x, t)

η

∂p

∂x
(3.3)

where k(x, t) represents the permeability of the medium, η the viscosity of
the fluid and w, u and p represent filtration velocity, displacement and pore
pressure, respectively. Equations (3.1), (3.2) and (3.3) represent the set of
governing equations.

The initial condition is given by

u(x, 0) = 0 0 ≤ x ≤ L (3.4)

since the filter is fixed we have

u(0, t) = 0 for all t ≥ 0. (3.5)

Since there is no contact stress at the upper boundary of the foam, a second
boundary condition is given by

∂u

∂x
(h(t), t) = 0 for all t ≥ 0 (3.6)

The controlled regulation of the pressure drop across the foam is given, with-
out loss of generality by,

p(x, 0) = 0 (3.7)

p(0, t) = 0 (3.8)

p(h(t), t) = F (t) for all t ≥ 0. (3.9)
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In the experiment of Parker et al only steady state data were recorded,
thus it was not necessary to specify the forcing function F (t). To investigate
transient effects theoretically, before equilibrium is reached, we choose

F (t) = p0 [1− exp(−γt)] (3.10)

for some limiting pressure p0 and some value γ. Note that the function h(t)
is related to the governing equations by the requirement of conservation of
volume, i.e.

u(h(t), t) = h(t)− L. (3.11)

3.1 Steady State

We follow the analysis of Barry & Aldis [13] as preparation for the more com-
plicated problem to be considered subsequently. The equilibrium equations
are given by

d2u

dx2
=

1

α

dp

dx
(3.12)

dw

dx
= 0 (3.13)

w = −k(x)

η

dp

dx
(3.14)

From (3.13) it follows that w(x) = c1 for some constant c1, and so by equation
(3.14)

c1 = −k(x)

η

dp

dx
. (3.15)

The initial boundary conditions reduce to

u(0) = 0 (3.16)

p(0) = 0 (3.17)

du

dx
(h) = 0 (3.18)

p(h) = p0 (3.19)

where
h = lim

t→∞
h(t)

and finally the conservation of volume condition becomes

u(h) = h− L.

Substituting from (3.14) into (3.12) we obtain

d2u

dx2
= − ηc1

αk(x)
. (3.20)
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We let
k(x) = k0g(x)

where k0 is the intrinsic permeability of the medium, corresponding to a state
with zero deformation.

For the case of constant permeabilty (i.e. g(x) = 1), it is straightforward
to show that the full solution reads

u(x) =
p0

2αh
x2 − p0

α
x =

p0
α

(
x2

2h
− x
)

(3.21)

p(x) =
p0
h
x (3.22)

h =
L

1 + p0
2α

. (3.23)

It is also easy to check and confirm through nondimensionalization that
our results coincide with those of Barry & Aldis [13] . We now introduce
variable permeability and see how well our theory matches the experimental
results of Parker et al.

3.2 Variable Permeability

We assume now that permeability varies exponentially with compression

g(x) = exp

(
M
∂u

∂x

)
i.e.

k(x) = k0 exp

(
M
∂u

∂x

)
.

With this form of the permeability, equation (3.20) becomes

d2u

dx2
= − ηc1

k0α
exp

(
−M du

dx

)
. (3.24)

Viewing this as a first order, separable DE for du
dx we can solve the governing

equations to obtain, after nondimensionalization:

u(x) =

(
x

M
− h

M [1− exp(Mp0)]

)
ln

[
exp(−Mp0)− (exp(−Mp0)− 1)

h
x

]
− x

M
− p0h

1− exp(Mp0)
(3.25)

p(x) =
1

M
ln

[
exp(−Mp0)− (exp(−Mp0)− 1)

h
x

]
+ p0 (3.26)

h =

[
1 +

1

M
+

p0
1− exp(Mp0)

]−1
(3.27)
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and in this case

w =
1

Mh
[1− exp(−Mp0)] (3.28)

Substituting from (3.28) into (3.25), the displacement can be written in terms
of the filtration velocity w instead of the pressure as

u(x) =

(
x

M
− 1

M2w
− h

M

)
ln [1 +Mw(x− h)]− x

M
+
Mhw − 1

M2w
ln [1−Mhw]

(3.29)
which is in agreement with the results of Barry & Aldis [13].

3.3 Transient Case

Although the work in the previous sections are of interest to us in the study
of hydrocephalus, in the initial stages of increased fluid pressure there is
reason to believe that the brain tissue would behave differently than the
foam experiment of Parker et al.

In the steady state analysis, we assumed both boundaries of the solid
matrix to be permeable. In the initial stages we assume that the ependyma
is essentially impermeable to CSF. As pressure builds up in the lateral ven-
tricles the resulting compliance of the surrounding brain tissue is primarily
attributable to the displacement of blood flowing out of the brain through
the vascular system, while the interior acts as a movable wall (we consider
this loss of blood to be represented by filtration through the outer boundary).

Assuming no flow at the outer boundary implies that w(h, t) = 0 and,
using Darcy’s law, this can be written as

∂p

∂t
(h, t) = 0. (3.30)

Furthermore treating the top surface as an impenetrable membrane the ap-
plied load must be shared by both interstitial pressure and the contact stress.
The total stress (in consolidation theory), in one dimension, is given by:

T = −p+ (λ+ 2µ)
∂u

∂x
. (3.31)

Thus the second boundary condition at x = h(t) is given by

− F (t) = −p(h, t) + α
∂u

∂x
(h, t) (3.32)

where

F (t) = p0[1− exp(−γt)]

and

α = λ+ 2µ.
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We now try to solve equations (3.1), (3.2), (3.3) subject to conditions (3.4),
(3.5), (3.6), (3.7), (3.8), (3.11), (3.30) and (3.32). Integrating (3.1) we obtain

α
∂u

∂x
(x, t)− p(x, t) = c1(t) (3.33)

and applying the boundary condition gives

c1(t) = −F (t). (3.34)

Notice that equation (3.2) implies

w +
∂u

∂t
= c2(t) (3.35)

and using this to eliminate w in (3.35) we obtain

− k(x, t)

η

∂p

∂x
+
∂u

∂t
= c2(t). (3.36)

Differentiating this with respect to x yields

− 1

η

∂

∂x

(
k(x, t)

∂p

∂x

)
+
∂

∂t

(
∂u

∂x

)
= 0 (3.37)

and substituting for the permeability, this reduces to

∂

∂t
(p− F (t)) = κ00

∂

∂x

(
exp

[
M

α
(p− F (t))

]
∂p

∂x

)
(3.38)

where

κ00 =
k0α

η
.

We attempt to solve this using perturbation theory. Define

f(t) = 1− exp(−γt)

then we can write
F (t) = p0f(t)

and nondimensionalize as

p(x, t)→ p(x, t)

p0

x→ x

L

τ → κ00t

L2
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It follows that (3.38) can now be written as

∂

∂τ
(p− f(τ)) =

∂

∂x

[
exp

(
Mp0
α

(p− f(τ))

)
∂p

∂x

)
. (3.39)

Let
v(x, τ) = p(x, τ)− f(τ),

then
∂v

∂τ
=

∂

∂x

[
exp

(
Mp0v

α

)
∂v

∂x

]
(3.40)

with boundary conditions

p(x, 0) = 0 ⇒ v(x, 0) = 0 (3.41)

p(0, τ) = 0 ⇒ v(0, τ) = −f(τ) (3.42)

∂p

∂x
(h, τ) = 0 ⇒ ∂v

∂x
(h, τ) = 0 (3.43)

h(τ) = 1 + u(h, τ) (3.44)

where
u→ u

L
.

Carrying out a short time analysis (τ → 0), we look for a perturbation
solution in terms of

δ =
P0

α
� 1.

The problem we seek to solve can then be written as

∂v

∂τ
=

∂

∂x

(
exp(Mδv)

∂v

∂x

)
(3.45)

subject to

v(x, 0) = 0 (3.46)

v(0, τ) = exp(−στ)− 1, where σ =
γL2

κ0c
(3.47)

∂v

∂x
(1, τ) = 0. (3.48)

Substituting the perturbation expansion

v(x, τ) = v0(x, τ) + δv1(x, τ) + δ2v2(x, τ) + ...

in equation (3.45), we obtain

∂v0
∂τ

+ δ
∂v1
∂τ

=
∂

∂x

[
∂v0
∂x

+ δ

(
∂v1
∂x

+Mv0
∂v0
∂x

)]
+O

(
δ2
)
. (3.49)
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The O(1) problem is simply the diffusion equation

∂v0
∂τ

=
∂2v0
∂x2

(3.50)

subject to

v0(x, 0) = 0,

v0(0, τ) = exp(−στ)− 1 where σ =
γL2

κ0c
, (3.51)

∂v0
∂x

(1, τ) = 0.

Using Laplace transforms, it is reasonably straight forward to show that

v0(x, τ) ∼ −(4στ)i2erfc

(
x

2
√
τ

)
as τ → 0 (3.52)

where erfc is the complementary error function.
The O(δ) problem is easily seen to be

∂v1
∂τ

=
∂

∂x

[
Mv0

∂v0
∂x

]
+
∂2v1
∂x2

=
∂2v1
∂x2

+M

[(
∂v0
∂x

)2

+ v0
∂2v0
∂x2

]
(3.53)

subject to

v1(x, 0) = 0,

v1(0, τ) = 0, (3.54)

∂v1
∂x

(1, τ) = 0.

Using (3.52), together with a standard property of the iterated comple-
mentary error function given by:

d

dz
(inerfc(z)) = −in−1erfc(z), for n=0,1,2... (3.55)

we obtain:

∂v0(x, τ)

∂x
∼ −(2σ

√
τ)i erfc

(
x

2
√
τ

)
as τ → 0 (3.56)

∂2v0(x, τ)

∂x2
∼ −σ erfc

(
x

2
√
τ

)
as τ → 0 (3.57)



Consolidation Theory of Hydrocephalus 271

and substituting into equation (3.53), the PDE for the first order correction
reads:

∂v1
∂τ

=
∂2v1
∂x2

+G(x, τ). (3.58)

where

G(x, τ) = 4Mσ2τ

(
i erfc

(
x

2
√
τ

))2

+ 2Mσ2τ

(
i2erfc

(
x

2
√
τ

))(
erfc

(
x

2
√
τ

))
(3.59)

as τ → 0, we make use of the asymptotic expansion for inerfc(z), to obtain:

v0(x, τ) ∼ −8σ
√
τ5√

πx3
exp

(
−x2

4τ

)(
1− 12τ

x2
+

180τ2

x4
+ ...

)
, (3.60)

∂v0
∂x
∼ 4σ

√
τ3√

πx2
exp

(
−x2

4τ

)(
1− 6τ

x2
+

60τ2

x4
+ ...

)
(3.61)

∂2v0
∂x2

∼ 2σ
√
τ3√
πx

exp

(
−x2

4τ

)(
1− 4τ

x2
+

12τ2

x4
+ ...

)
(3.62)

The O(δ) problem is rather difficult to handle, however since to O(τ2) we
have v1(x, τ) = 0 for practical purposes (for any fixed x with δ � 1 and
τ → 0) we have

∂v1
∂τ

= −(4στ)i2erfc

(
x

2
√
τ

)
+O

(
δ
τ3

x4
exp

[
−x

2

4τ

])
. (3.63)

Since
v(x, τ) = p(x, τ)− f(τ)

this implies

p(x, τ) = 4στi2erfc

(
x

2
√
τ

)
+ 1− exp(−στ) +O

(
δ
τ3

x4
exp

[
−x

2

4τ

])
(3.64)

where

σ =
γL2

κoc
.

To find the filtration velocity w(x, τ), we use Darcy’s law

w(x, τ) = −δ exp

(
M
∂u

∂x

)
∂p

∂x
(3.65)

where w has been nondimensionalized as

w → w
L

κoc
.
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Notice that (3.65) suggests that to leading order (even with a positive
pressure gradient) there is no filtration, which is nonphysical. This suggests
the existence of a boundary layer. Furthermore, since the boundary condition
at x = 1 requires zero flow, we deduce that the boundary layer must be
located near x = 0. Stretching the boundary layer, by introducing

ξ =
x

δ

and rewriting (3.65) in terms of ξ we obtain, to leading order

w0(ξ, τ) = −∂v0
∂ξ

(3.66)

while the first order correction (recalling that v1(ξ, τ) = 0) is

w1(ξ, τ) = −Mv0
∂v0
∂ξ

. (3.67)

Thus, in terms of the original spatial variable x, the filtration velocity in the
boundary layer is given by

w(x, τ) = −δ ∂v0
∂x
− δ2Mv0

∂v0
∂x

+O
(
δ3
)

(3.68)

or using equations (3.60) and (3.61)

w(x, τ) ∼ −2δσ
√
τierfc

(
x

2
√
τ

)
− 8δ2Mσ2τ3/2i

[
erfc

(
x

2
√
τ

)]2
(3.69)

for δ � 1 and τ → 0, it can be shown using a standard asymptotic expansion
for

ierfc

(
x

2
√
τ

)
that the second term is in fact O(δ2τ4), making it even smaller (asymptot-
ically) than the v1 term (assumed to be zero in (3.67) above). Thus our
solution is better expressed as

w(x, τ) ∼ −2δσ
√
τierfc

(
x

2
√
τ

)
+O

(
δ2
τ3

x4
exp

[
−x

2

4τ

])
. (3.70)

Our final task is to determine the displacement. Substituting from (3.63)
into

∂u

∂x
= δv(x, τ) (3.71)

we obtain

∂u

∂x
= −4δστi2erfc

(
x

2
√
τ

)
+O

(
δ2
τ3

x4
exp

[
−x

2

4τ

])
(3.72)
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subject to
u(0, τ) = 0.

Integrating yields

u(x, τ) =
(

8δστ3/2
)
i3erfc

(
x

2
√
τ

)
+ C + ... (3.73)

and since

i3erfc(0) =
1

6
√
π

we find

C = − 4

3
√
π
δστ3/2 +O

(
δ2
τ3

x4
exp

[
−x

2

4τ

])
.

Thus

u(x, τ) =
(

8δστ3/2
)
i3erfc

(
x

2
√
τ

)
− 4

3
√
π

+O
(
δ2
τ3

x4
exp

[
−x

2

4τ

]
.

)
(3.74)

In conclusion, equations (3.64), (3.70) and (3.74) constitute an asymptotic
solution of the governing system of PDEs and boundary conditions (3.40)-
(3.43).

4 Conclusion

We have applied Biot’s consolidation theory to the human brain described in
a simplified manner as a composite of a viscous fluid saturating and filtrating
through a solid matrix. While there has been some previous progress in
this direction, the established results are based on the assumption that the
permeability of the solid matrix remains constant. On physical grounds it
seems reasonable to assume that the permeability of the solid matrix should
decrease with compression. The aim of this paper has been to investigate
the role that these types of variations might play in the dynamics of such
biphasic materials. We assume, analogous to work on cartilage, that the
permeability varies exponentially with the strain [11], however this renders
the resulting governing equations nonlinear with associated difficulties, in
any attempt to solve them. Thus we have limited ourselves in this paper to a
study of an analogous one dimensional problem using perturbation methods.
Along these lines, we have applied the theory to a thought experiment on
pressure driven compression of brain tissue using the experiment of Parker
et al [12] as the basis for the steady state part in our analysis. The boundary
conditions were based on the full 3D problem, assuming the ventricular wall
to be impermeable initially during compression, but permeable in the steady
state.

It is interesting to compare the transient surface stresses for the cartilage
experiment [11] to our own results since the

√
t behaviour of the displacement-

driven experiment has been verified experimentally in [11], our finding of t
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behaviour for the pressure driven experiment is an indication of a funda-
mental difference between the two situations. This discrepancy between the
asymptotic transient behaviour of the model brain and the model cartilage
merits further study. If confirmed experimentally, this would challenge the
commonly held assumption that most soft hydrated biological tissues display
qualitatively similar responses to mechanical or hydrodynamic loading. At
present, however, it is difficult to reach any definitive conclusion due to the
lack of appropriate experimental data for the brain.

Another source of difficulty is that the solution of (3.45) entails dealing
with a nonlinear parabolic PDE; however given the straight forward boundary
conditions (3.46)-(3.48) one might expect to be able to find good approxi-
mate solutions using perturbation theory. Instead, even the leading order
solution (see (3.52)) and the first order correction (see (3.53)) have to be
obtained by means of a further asymptotic expansion. It is clear that regular
perturbation fails and singular perturbation theory techniques have to be
applied in this context. One could try to obtain a fully numerical solution,
but then much of the physical insight obtained through the use of analytical
techniques would be lost. Moreover, the fundamental problem of choosing
appropriate values of the mechanical parameters of the brain still remains
unresolved. A numerical/graphical comparison of the analytic approxima-
tions with fully numerical solutions of the boundary value problem would be
useful and informative, and will be the subject of future work. While the
mathematical challenges are worthy of study in themselves, improvements in
technology in the near future may facilitate experiments on the brain to gen-
erate appropriate and relevant data, which in turn can be used to inform our
mathematical models. Although the mathematical modelling of the brain
presents a formidable challenge, there is reason to hope that the continu-
ing synergy between the mathematical and biomedical sciences will lead to
dramatic advances in our understanding of brain biomechanics.
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