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Abstract. We revisit the Magneto-Hydrodynamic Shallow Water model of the solar

tachocline originally presented in [3]. First, we demonstrate that the spherical linearized

equations considered in [13] have an extra restriction that is not required and that the

error in their model increases with the increasing strength of the magnetic field and the

ambient rotation of the star. Second, we present a simple pseudo-spectral model that is

able to accurately solve for the modal structure of these solar waves in either the Cartesian

or spherical co-ordinate geometries. We demonstrate that even though the asymptotic so-

lution can be fairly good in the presence of strong magnetic fields and strong rotation, the

numerical method that we present yields a higher level of accuracy with little computa-

tional effort.
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1 Introduction

Helioseismological observations suggest that the Sun possesses a thin fluid
layer between the radiative zone, which exhibits solid body rotation, and the
outer convective zone, which is differentially rotating [6, 11]. This layer is
now referred to as the solar tachocline. It was first suggested by [3] that
a Magneto-Hydrodynamic Rotating Shallow Water (MSW) model could be
used to model these thin layers. Shallow water models have previously been
used mostly for atmospheric and oceanic flows [7].

The three different wave types that can occur in this idealized model
of the tachocline are magneto-Poincaré, Rossby and Alfvén waves. This is
in contrast to the classical shallow water model in which only Poincaré and
Rossby waves are possible (additional wave types are possible in the presence
of bottom bathymetry or side walls). The propagation of waves in the solar
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tachocline is thought to be of importance to many phenomena involving
magnetic activity, including the solar cycle [9], and its long term variability
[14]. Furthermore, wave propagation is an important means through which
momentum is transported.

Analyses of the linearized equations have been carried out in the context
of an f -plane [10], a β-plane, and also in spherical coordinates for varying
background magnetic fields: first in [13], hence referred to as ZOBS, and sub-
sequently in [4]. Numerical approaches to the MSW equations have also been
implemented in [1] to study the time evolution of the nonlinear dynamics.
We complement previous works by presenting a relatively simple numerical
model that can be used to determine the spectrum and spatial structures of
all the different wave types in this model. We also point out that the analyt-
ical solution of ZOBS is more restrictive than perhaps was previously stated
in that it assumes the motion is incompressible in two-spatial dimensions.

The outline of this paper is as follows. In section 2 we present the Carte-
sian and spherical models and show how they can be solved numerically to
determine the characteristics of the linear waves in the MSW model. Next, in
section 3 we show some numerical results and compare the numerical results
with the analytical solution of ZOBS. Finally, we provide conclusions and
some directions for future work.

2 Idealized Models and Numerical Methods

The governing equations for fully nonlinear motion of the MSW model that
determine the evolution of the linear momentum, mass and magnetic field,
as presented in [3] and ZOBS for example, read:

∂B

∂t
+ (u · ∇)B = (B · ∇)u, (1)

∂u

∂t
+ (u · ∇)u =

1

4πµ0ρ
(B · ∇)B− g∇H, (2)

∂H

∂t
+∇ · (HV) = 0. (3)

Note that u,B and H are the velocity, magnetic field and height, respec-
tively. Physically, these determine how the dynamics must evolve in order to
conserve magnetism, momentum and mass, respectively.

As the name implies, a necessary assumption for this shallow water hydro-
dynamic model to be applicable is that the aspect ratio between the vertical
and horizontal scales of motion is small. The tachocline of the Sun has a
thickness that is 4% of the solar radius and is located at 0.7 solar radii from
the centre where the radius is 6.96 × 108m [2]. Therefore, this model may
be insightful in characterizing some aspects of solar dynamics, in particular
some solar waves. With this goal in mind we restrict our attention to the
linearized equations about a state of rest and a zonal magnetic field. This



A Shallow Water Model of the Solar Tachocline 221

allows us to characterize the different types of waves that can occur and the
mechanisms through which they propagate. This limit will always be valid in
the regime of very small deviations from the basic state. In the following two
subsections we present the model equations for the Cartesian and Spherical
MSW models and how they can be treated numerically.

2.1 Cartesian MSW Model

If we are studying flows that have relatively small variations in latitude,
then one can make what is often referred to as the β-plane approximation
[7]. Linearizing this set of equations in Cartesian co-ordinates yields the
following equations for fluid motion on a plane:

∂ux
∂t
− fuy =

B0

4πµ0ρ

∂bx
∂x
− g ∂h

∂x
, (4)

∂uy
∂t

+ fux =
B0

4πµ0ρ

∂by
∂x
− g ∂h

∂y
, (5)

∂bx
∂t

= B0
∂ux
∂x

, (6)

∂by
∂t

= B0
∂uy
∂x

, (7)

∂h

∂t
+H0

(
∂ux
∂x

+
∂uy
∂y

)
= 0. (8)

Note that ux, uy are the two components of velocity, bx, by are the two compo-
nents of magnetism and h are height. Subscripts denote a particular horizon-
tal direction. We have taken the background magnetic field to be B = B0x̂,
with B0 constant, and make the beta-plane approximation to the Coriolis
parameter f = 2Ω sin θ ≈ f0 + βy with f0 = 2Ω sin θ0 and β = 2 Ω

R0
cos θ0,

where R0 and Ω are the radius of the star and rotation rates, respecitvely.

To obtain wave solutions we look for normal mode solutions with respect
to the zonal direction and time of the form

V =


ux
uy
bx
by
h

 = ei(kxx−ωt)


ũx
ũy
b̃x
b̃y
h̃

 . (9)

To study waves that are constrained to propagate zonally within certain spec-
ified latitudes, it is convenient to impose no-normal flow boundary conditions
at the latitudinal boundaries of the domain: uy = 0 at y = ±L2 where L is
the width of the channel. Even though there are no such boundaries in stars,
this choice is convenient for the numerical calculations and is appropriate in
describing waves that propagate in the East-West directions [8].
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Substituting this into equations (4)-(8) we get the system MV = iωV
where

M =


0 −f −B0ikx

µ0ρ
0 gikx

f 0 0 −B0ikx
µ0ρ

g ∂
∂y

−B0ikx 0 0 0 0
0 −B0ikx 0 0 0

H0ikx H0
∂
∂y 0 0 0

 . (10)

Note that this system is mathematically equivalent to equation (14) of ZOBS;
however, instead of writing the eigenvalue problem as a second order scalar
equation we prefer to write it as a first order system of five equations, which
we can then solve numerically. To achieve high numerical accuracy for a given
number of degrees of freedom, we will use a spectral method on a Chebyshev
grid [12], which we will discuss in detail later in this section.

2.2 Spherical MSW Model

A more general approach to study the MSW equations (1)-(3) is instead to
assume a spherical geometry where φ is longitude and θ is co-latitude. In
this case we assume the background magnetic field in the φ-direction given
by Bφ = B0 sin θ and the governing linearized equations are,

∂uθ
∂t
− 2Ω0 cos θuφ =

B0

4πµ0ρR0

∂bθ
∂φ
− 2

B0

4πµ0ρR0
cos θbφ −

g

R0

∂h

∂θ
, (11)

∂uφ
∂t

+ 2Ω0 cos θuθ =
B0

4πµ0ρR0

∂bφ
∂φ

+ 2
B0

4πµ0ρR0
cos θbθ −

g

R0 sin θ

∂h

∂φ
(12)

∂bθ
∂t

=
B0

R0

∂uθ
∂φ

, (13)

∂bφ
∂t

=
B0

R0

∂uφ
∂φ

, (14)

∂h

∂t
= −H0

R0

∂uθ
∂θ
− H0 cos θ

R0 sin θ
uθ −

H0

R0 sin θ

∂uφ
∂φ

. (15)

This system can similarly be written as MV = iωV but with solution vector
V and dynamic matrix M can be written as,

V =


uθ
uφ
bθ
bφ
h

 = ei(sφ−ωt)


ũθ
ũφ
b̃θ
b̃φ
h̃

 ,
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and the matrix is
0 −2Ω0 cos θ − isB0

4πµ0ρR0

2B0

4πµ0ρR0
cos θ g

R0

∂
∂θ

2Ω0 cos θ 0 − 2B0

4πµ0ρR0
cos θ − isB0

4πµ0ρR0

isg
R0 sin θ

− isB0

R0
0 0 0 0

0 − isB0

R0
0 0 0

H0

R0

(
cos θ
sin θ + ∂

∂θ

)
isH0

R0 sin θ 0 0 0


This system of equations is nearly equivalent to that presented in ZOBS.

In the Appendix we go through the details of why our equation (14) differs
from equation (26) in ZOBS. An alternative way to see the limitation of
their equation is to make the assumption that the variations in latitude are
small and then recover the β-plane equations. As is well explained in [7],
in this limit of a β-plane we have that [uθ, uφ, bθ, bφ] → [ux, uy, bx, by] and
furthermore,

1

R0 sin θ

∂

∂φ
≈ ∂

∂x
and

1

R0

∂

∂θ
≈ ∂

∂y
. (16)

The ZOBS version of the meridional magnetic equation yields that ∂ux/∂x
is instead replaced by −∂uy/∂y. This is only strictly true in the two-
dimensional incompressible limit, what is referred to in the oceanographic
community as the rigid-lid approximation. This is probably a reasonable
approximation in many instances, however, our use of a spectral collocation
numerical method allows us to achieve a more accurate solution of the gen-
eral model than can be obtained by any asymptotic solution. This allows us
to show that the analytical solution of ZOBS is appropriate for a wide range
of parameters and it also illustrates the structure of these waves in the limit
where the ZOBS solution is no longer valid.

2.3 Numerical Method

By finding numerical approximations to the eigenvalues and eigenvectors of
the eigensystem above we determine the frequencies and spatial structure
of the solar-SW waves that are admissible in this system. This is done by
discretizing the meridional direction onto a Chebyshev grid and using the
corresponding differentiation matrix as presented in [12]. Details of how this
has been successfully applied in the oceanographic context can be found in [8]
and many subsequent works. In our numerical results for both the Cartesian
and the Spherical models we found that using only 100 grid points yielded
accurate solutions. This calculation was performed very efficiently using the
the direct solver eig in Octave/Matlab based on LAPACK.

3 Spatial Structure of Wave Solutions

We have used the numerical method explained in the previous section to com-
pute the spatial structure and frequencies for a variety of modes that idealize
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Numerical Analytical

Figure 1: Comparison of the MSW modes computed numerically to the
asymptotic solution presented in ZOBS [13]. Columns one to five depict
the following fields: uθ, uφ, Bθ, Bφ, h. Rows one to three are for modes one,
two and three. This is for the following parameters: Ω = 2.6 × 10−6s−1,
B0 = 90T (these are Sun-like parameters with the exception of the back-
ground magnetic field which is stronger). The x-axis is the co-latitude and
the solutions are normalized so that uθ has a maximum of one.
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Figure 2: Comparison of the MSW modes computed numerically to the
asymptotic solution presented in ZOBS [13]. Columns one to five depict
the following fields: uθ, uφ, Bθ, Bφ, h. Rows one to three are for modes one,
two and three. This is for the following parameters: Ω = 2.3 × 10−5s−1,
B0 = 10T (these are Sun-like parameters with the exception of the rota-
tion which is stronger). The x-axis is the co-latitude and the solutions are
normalized so that uθ has a maximum of one.
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Figure 3: The top two figures illustrate how the relative root mean square
(RMS) error between the numerical solution to equations (11) to (15) and
equations (5) to (8) in ZOBS for the first three modes that depend on the
magnetic field strength and rotation. In the top left the abscissa is the
magnetic field, B0, whereas in the top right the abscissa is the ambient
rotation, Ω. The parameters are the same as used in the previous figures
except for the parameter being varied. The bottom left figure compares the
uφ field for mode 3 in the case of the strongest magnetic field. The bottom
right compares the Bφ field for mode 1 in the case of the strongest rotation. In
both subfigures the dashed line refers to the numerical solution to equations
(11) to (15), while the solid line is the solution to equations (5) to (8) in
ZOBS.
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what might be present in the tachocline of different stars. In the case of weak
rotation and weak magnetic fields, the fields are harmonic and the analytical
solution of ZOBS is accurate in describing the leading order behavior. In the
Spherical formulation, when either the rotation, the magnetic field, or both
become strong the error in the analytical solution increases. Similar discrep-
ancies are observed in the Cartesian model for channel widths on the order of
π/10 and only for strong rotation. Since it is well known that the Cartesian
model is limited in its scope, here we focus on the modal structures in the
Spherical model. We note that the qualitative dependency on the parameters
in the two models are similar.

In Figure 1 we compare the five different fields, uθ, uφ, Bθ, Bφ, h, that are
observed for the first three low-frequency, rotationally modified Alfvén modes
that fit in the given domain in the case of strong magnetic fields in the basic
state. First, we readily observe that even in this case the analytical solution
agrees well with the numerical one. Indeed, the mode one structure has only
slight deviations. Second, we find that the discrepancies between the mode
two and three are also weak but the differences are largest in the meridional
velocity, uθ, meridonal magnetic field, bθ and the depth, h.

The case of a rapidly rotating star is depicted in Figure 2. There are some
differences that are observed but again, they are weak, and it is the meridional
velocity and magnetic fields that differ the most significantly. In the case of
small magnetic field and small rotation there are almost no deviations (the
relative error is only one percent). We note that the discrepancies arise
from the assumption of incompressibility in the analytical solution in the
φ magnetic equation, which then impacts the φ velocity and height fields.
This becomes apparent for higher magnetic fields because it is the evolution
equation for bθ that differs to the MSW equations given in ZOBS. Differences
due to variations in the rotation are purely due to the nature of the slowly
rotating star approximation used in ZOBS.

Finally, it is of interest to compare the differences between the model
presented here, described in equations (11) to (15), to that in ZOBS, where
the equation for the zonal magnetic field is only approximately true. This
is to emphasize the error that can arise due to inaccuracies in the zonal
magnetic field, given in equation (14). To do that we compare the results
of applying our pseudo-spectral method to the two models and find how
the relative root-mean-square (RMS) error depends on the magnetic field
and ambient rotation. By relative RMS error we mean the L2 norm of the
error of the two solutions normalized by the L2 norm of the more accurate
solution. This is presented in Figure 3 for the first three modes. In the top
left the abscissa is B0 whereas in the top right it is replaced by Ω, both
have the same units. The bottom left figure compares the uφ field for mode
3 in the case of the strongest magnetic field. The bottom right compares
the Bφ field for mode 1 in the case of the strongest rotation. These fields
were chosen because they have the greatest relative error. The error in the
case of strong magnetism is on the order of 400%, whereas the error due
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to strong rotation only reaches values slightly larger than 10%. We see,
perhaps not too surprisingly, that since the discrepancy is in the magnetic
field, the error is more prominent with large magnetic fields. Furthermore,
with varying rotation we see that the mode with the largest error depends on
the magnitude of the ambient rotation whereas the error due to the magnetic
field always increases with mode number (for the three modes presented).
This suggests that the approximate model might be adequate for stars with
relatively weak magnetic fields, as is the case for our sun, but will necessarily
develop significant error for stronger magnetic fields.

4 Conclusions

We have extended the work of ZOBS and have presented a simple numerical
method that can be used to compute the spectrum and spatial structures
of linear MHD SW waves that can idealize those that are believed to exist
in the tachocline. This is both for the Cartesian and spherical geometries.
We found that even though the analytical solution in ZOBS assumes in-
compressibility in two spatial dimensions, it is a good approximation to the
linear waves in tachoclines for stars that do not have strong magnetic fields
or strong rotations. We advocate for the numerical, rather than the approx-
imate analytical approach, because the former can determine the structure
of the linear waves for a range of parameters easily.

One important point to appreciate is that with little numerical effort
we can obtain accurate representation of both the spatial structures and
diseprsion relations of the linear waves. This is important since the more
accurately we can model waves the better we can assertain the effect they
have on the transport of momentum and energy in the system. For example
in the case when waves are trapped to the centre, it will be found that
the transportation of momentum is more concentrated at the equator when
compared to that of harmonic waves.

This study of linear waves in a solar tachocline can be extended into a non-
linear regime to determine whether the linear characteristics are maintained
or, if not, what manner of changes occur. Given the nonlinear extension, it
would then be possible to address the nonlinear interaction of these waves
to observe what resonance mechanisms dominate in the transfer of energy
between length scales. This is beyond the scope of this manuscript.

5 Appendix A

We note that equation (14) is different from equation (26) in ZOBS, which
is

∂bφ
∂t

= −B0 sin θ

R0

∂uθ
∂θ
− B0 cos θ

R0
uθ (17)
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The derivation of equation (14) involves finding the φ component of equation
(1). In order to do so requires the identity

((A · ∇)B)φ = Ar
∂Bφ
∂r

+
Aθ
r

∂Bφ
∂θ

+
Aφ
r sin θ

∂Bφ
∂φ

+
AφBr
r

+
AφBθ cot θ

r
. (18)

Plugging equation (18) into (1) with

B =

 0
bθ

Bφ + bφ

 , U =

 0
uθ
uφ

 , (19)

we get
∂bφ
∂t

+
uθ
r

∂Bφ
∂θ

=
Bφ

R0 sin θ

∂uφ
∂φ

+
uθBφ cot θ

R0
(20)

Since Bφ = B0 sin θ we have
∂Bφ
∂θ = B0 cos θ = Bφ cot θ which means

∂bφ
∂t

=
Bφ

R0 sin θ

∂uφ
∂φ

(21)

Which is precisely our equation (14).

6 Appendix B

Since our model equations remove an extra approximation that was mode
in ZOBS we now present a brief outline of the derivation of their simplified
equations to see how the more general equations can be written. Multiplying
equations (11) - (14) by sin θ and (15) by sin2 θ, then substituting in ûθ =

uθ sin θ, ûφ = uφ sin θ, b̂θ = bθ sin θ, b̂φ = bφ sin θ, get

∂ûθ
∂t
− 2Ω cos θûφ +

g

R
sin θ

∂h

∂θ
− B0

4πµ0ρR0

∂b̂θ
∂φ

+
2B0 cos θ

4πµ0ρR0
b̂φ = 0,

∂ûφ
∂t

+ 2Ω cos θûθ +
g

R0

∂h

∂φ
− B0

4πµ0ρR0

∂b̂φ
∂φ
− 2B0 cos θ

4πµ0ρR0
b̂θ = 0,

∂b̂θ
∂t
− B0

R0

∂ûθ
∂φ

= 0,

∂b̂φ
∂t
− B0

R0

∂ûφ
∂φ

= 0,

sin2 θ
∂h

∂t
+
H0

R0

(
sin θ

∂ûθ
∂θ

+
∂ûφ
∂φ

)
= 0.

If one follows steps similar to those in ZOBS one can reduce this system to
one equation for the dispersion relation. This requires defining the following
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parameters

λ = ω
2Ω , ε =

4Ω2R2
0

gH0
, α2 =

B2
0

16πµ0ρΩ2R2
0
, (22)

η = gh
2ΩR0

, µ = cos θ, D = (1− µ2) ∂
∂µ , (23)

and one obtains that the full dispersion relation is[[(
λµ+ 2sµα2

)
sλ+

(
λ2 − s2α2

)
λD
]
×(

λ2 − s2α2
)
D − s

(
λµ+ 2sµα2

)
ελ (1− µ2) (λ2 − s2α2)− s2λ

−
(
λµ+ 2sµα2

)2
+
(
λ2 − s2α2

)2]
ũθ = 0 .

If one makes the approximations that ε
s2 � 1 and α2 � 1, essentially that

the rotation and magnetic fields are relatively small, then we can approximate
the equation with the Legendre differential equation:[

∂

∂µ

(
1− µ2

) ∂

∂µ
− s2

1− µ2
+
s

λ

]
ũθ = 0.

Now note that we have definedDµ =
(
1− µ2

)
∂
∂µµ =

(
1− µ2

)
+µ
(
1− µ2

)
∂
∂µ =

(1− µ2) + µD. This is precisely the Legendre equation with n(n+ 1) = − s
λ

and the solutions are of the form ũθ = P sn(cos θ). This is the solution found
in [5].
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