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Abstract. The aim of this paper is to lay the foundations of the basic science that will

guide the design and making of an implantable neuro-glial-vascular unit optimized to per-

form certain fundamental processes that could facilitate monitoring and supporting the

proper functionality of the brain. Such an engineered unit is called brain-on-a-chip. We

first provide a possible structure of a brain-on-a-chip and then focus on the mathematical

modeling of the coupled mechano-electrochemistry of a neuron and its membrane. We

propose a constrained Lagrangian formulation that links the Hodgkin-Huxley model of the

electronic membrane and the motion and diffusion processes of a triphasic porous medium

that fills the inside of the neuron. The three phases of the triphasic medium are: solid,

fluid and ionic. Lastly, a simplified Lagrangian formulation more suitable for practical

applications is given whose corresponding Euler-Lagrange equations are obtained from the

non-conservative form of Hamilton’s principle.

Keywords. Neuronal Mechano-Electrochemistry, Triphasic Porous Media, Hamilton’s
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1 Introduction

Imagine an engineered neuro-glial-vascular unit, brain-on-a-chip, that could
perform some fundamental functions of a part of the brain. A brain-on-a-
chip could provide much needed functional support during recovery after a
stroke or serious traumatic injury, or could prevent seizures. Such a chip may
be enhanced by adding specialized sensors to act as biomarkers and could
send critical information about an imminent traumatic event to a receiver
outside the body. In addition, a brain-on-a-chip might be optimized for tar-
geted drug delivery to a brain’s region affected by disease. A mathematical
model that couples mechanical behavior and fundamental electro-chemical
processes of such a neuro-glial-vascular unit could be used for instance to
study mechanotrasduction mechanisms involved in traumatic brain injuries
or in the growth and evolution of cerebral aneurysms. Therefore, the aim of
this paper is to lay the foundations of the basic science that will guide the
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mathematical modeling and design of the first prototype of a brain-on-a-chip.

We envision a brain-on-a-chip as a human-made neuronal-glial-vascular
unit at the meso-scale level that links some basic mechano-electrochemical
mechanisms of its constituents. At this stage we see this chip as an en-
gineered, chemically driven, mechano-hydraulic system made of a generic
neuron and its membrane, a glia cell, a blood vessel and interstitial fluid.
While the electrochemistry of the individual components (neuron, glia cell,
blood vessel) and their corresponding networks has been intensively studied
by neuroscientists for many decades, only in recent years linkages among the
electrochemical behavior of neurons, glial cells and cerebral vasculature have
started to be reported [4, 15, 19]. However, these studies do not provide me-
chanical structures to these components and thus their mechanical behavior
and mechanotransduction mechanisms are not accounted for. On the other
hand, studies of the mechanical properties of individual neurons, glial cells
and cerebral blood vessels can be found for instance in [2, 12, 16, 18, 22, 26].
To the best of our knowledge work on the mechanical interactions among
these components has not been reported yet. In a couple of recent papers
[6, 7], we proposed the first electromechanical model that couples Newton’s
law of motion of a linear viscoelastic Kelvin-Voigt solid-state neuron and the
classical Hodgkin-Huxley equations of the neuron’s membrane. The original
model [6] uses a constrained Lagrangian formulation to incorporate relevant
macroscopic (cell level) and microscopic (ionic level) mechanical and electrical
information, and thus facilitates the study of neuronal mechanotransduction
and the dynamics of neuronal stiffness due to the evolutions of the microstruc-
tural components of the neuronal membrane. A generalized model was given
in [7] that provides the physical structure of a linear viscoelastic fluid for
the ionic gates m, n, and h introduced by the Hodgkin-Huxley model1. In
addition, fractional temporal derivatives of variable order are used to model
the entangled temporal scales caused by the stochastic nature of the action
potential and the inseparability of the multiple time scales involved in the
neuronal electromechanical processes.

We begin this paper by presenting a possible mechanical structure of a
brain-on-a-chip. Next we focus on a generalization of our previous work
[7] that couples the modified Hodgkin-Huxley model proposed in [24] where
the ionic gates m, n, and h are linear viscoelastic Maxwell fluidic elements
and the model of a triphasic porous medium which is a more realistic rep-
resentation of the inside of a neuron. The three phases of the triphasic
structure are: 1) an intrinsically incompressible, porous-permeable, linearly
elastic solid phase (cytoskeleton), 2) an intrinsically incompressible, intersti-
tial fluid phase, and 3) an ionic phase with, for now, only two monovalent
ion species: anion (Cl−) and cation (Na+). In addition, we assume that: 1)

1For instance, chemically-driven door closers give a possible visualization of the ionic
gates that could lead to their material realization.
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the concentrations of K+ inside and outside the neuron do not change much
such that the potassium reversal potential is almost constant EK ≈ −80mV ,
and 2) there exist negatively charged groups on the solid phase called fixed
charges since they are much less mobile than the freely mobile ions dis-
solved in the fluid phase [23]. The solid and the ionic phases are electrically
charged, the fluid phase is electrically neutral, and the neuron is near its
rest state. As in our previous work, we will use a constrained Lagrangian
formulation that adds together the energies from various physical fields and
length scales. This approach has the advantage that can easily incorporate
relevant mechano-electrochemical information of the other components of the
brain-on-a-chip from various time and length scales which we intend to do
in our further work. Two other noteworthy advantages of the Lagrangian
formulation are as follows. The equations of motion are obtained from using
one minimization principle (Hamilton’s principle) which is independent of
the system of coordinates. In addition, this variational formulation is the
natural mathematical framework for the development of numerical solvers
using finite element methods. We point out however that a Lagrangian for-
mulation is not unique and it should probably not be seen as a fundamental
method to obtain physical laws [9, 20]. Therefore, we consider our energy-
based variational formulation to be phenomenological in nature, limited only
to the mechanics and electro-chemistry that can be either directly observed or
inferred from experiments. Lastly, we will give a simplified Lagrangian formu-
lation that is more suitable for practical applications and the corresponding
Euler-Lagrange equations will be obtained by applying the non-conservative
form of Hamilton’s principle.

2 Design of a Brain-on-a-Chip

In fig.1 we present a schematic of a brain-on-a-chip. The chip is made of
the following components: a neuron and its membrane, a glia cell, a blood
vessel and interstitial fluid. The glial cell and the inside of the neuron are
modelled as triphasic porous media, while the ionic gates of the neuronal
membrane (envisioned as chemically-driven door closers) are modelled as lin-
ear viscoelastic Maxwell fluids (fig.2). The triphasic porous medium has three
phases: 1) an intrinsically incompressible, porous-permeable, charged elastic
solid phase represented in figs.1 and 2 as a spring-mass system, 2) an intrin-
sically incompressible, interstitial fluid phase represented in figs.1 and 2 as
a dashpot-mass system, and 3) an ionic phase.The electro-chemical dynam-
ics of the neuron’s membrane is described by the modified Hodgkin-Huxley
model that contains transient sodium currents, delayed rectifier potassium
currents, specific leak currents for sodium, potassium and chloride ions, and
sodium/potassium pump current. The electric circuit corresponding to the
Hodgkin-Huxley model is shown in fig.2. The interstitial fluid is modelled
as an incompressible viscous Newtonian fluid filled with ions that travel in
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and out from the other compartments of the brain-on-a-chip. The flow of the
interstitial fluid is driven by the moving of the ions and the pulsations of the
blood vessel. In fig.1, the interstitial fluid is represented by a dashpot-mass
system. Lastly, the blood vessel is modelled as an elastic spring-mass system,
while the blood is assumed to be an incompressible Newtonian fluid repre-
sented in fig.1 as a dashpot-mass system. If we presume that the blood is
the supplier of interstitial fluid, ions and other proteins and molecules, then,
at a later time, the blood will have to be modelled as a complex fluid mix-
ture while the blood vessel will be assumed to be a semi-permeable biphasic
medium.

Figure 1: Schematic of a brain-on-a-chip. The box titled Neuron & Its Mem-
brane is shown in fig.2. The solid phases are represented as spring-mass
systems, while the fluid phases are drawn as dashpot-mass systems.

The coupled laws of mechanics and electro-chemistry of this chip can be
obtained from a constrained Lagrangian formulation and the non-conservative
form of Hamilton’s principle. In order to make progress in this direction, we
will focus first on a Lagrangian formulation for the neuron and its mem-
brane. Once this formulation is established then the energetic contributions
from the other components of the brain-on-a-chip will simply be added to the
mechanical, electrical and chemical energies of the neuron and its membrane.

3 Mechano-Electrochemical Model of a Neu-
ron and Its Membrane

As in our previous work [6, 7], the neuron is modelled as an axi-symmetric
circular cylindrical annulus whose inner core is filled with the intracellular
space and the outer core is the cell’s membrane (fig.2). The inner core has
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Figure 2: Schematic of a neuron and its menbrane. The neuron is assumed to
be an axisymmetric homogeneous circular cylinder whose inner core is filled
by the intracellular space, and the outer layer is the membrane. Because
of the geometrical symmetry (dashpot line) and material homogeneity, it is
enough to study half of the neuron whose properties are encapsulated into
a spring-mass system representing the solid phase connected in series to a
dashpot-mass msystem representing the fluid phase and both phases interact
with a third, ionic phase. Neuronal membrane is represented as an electric
circuit governed by the Hodgkin-Huxley model where the well-known ionic
gates m, n, and h are modelled as linear viscoelastic Maxwell fluids connected

in parallel. Here the spring constant of the solid phase is given by k =
EA

r0
,

where E is the Young’s modulus, A is the cross-sectional area of the inner core
of the cylinder of radius r0. The viscosity of the fluid phase is denoted by η,
and the damping coefficients of the Maxwell elements are ηm, ηn, and ηh. For
now, we assume that the electric circuit and Maxwell elements representing
the membrane are independent of each other.
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radius r0 and the radius of the outer core (membrane’s thickness) is r << r0.
The deformation of the neuron is only along the radial direction and we de-
note by x the independent spatial variable. We assume that the center of the
neuron is fixed (x = 0) while the interface x = r0 between the intracellular
space and the membrane is moving due to ionic transport across the mem-
brane. Because the membrane’s thickness is much smaller than the length
of the intracellular space, the physical quantities describing the mechano-
electrochemistry of the membrane are assumed to vary in time but not in
space.

We model the intracellular space as a triphasic porous medium whose
three phases are: 1) an intrinsically incompressible, porous-permeable, nega-
tively charged, linearly elastic solid phase, 2) an intrinsically incompressible,
electrically neutral, Newtonian fluid phase, and 3) an ionic phase with two
monovalent ion species, Cl− and Na+. We further assume that: 1) the con-
centrations of K+ inside and outside the neuron do not change much such
that the potassium reversal potential is almost constant EK ≈ −80mV , and
2) there exist negatively charged groups on the solid phase, fixed charges,
which are not as mobile as the ions flowing through the fluid phase. The
porous medium is saturated with the volume fractions of the ions much
smaller (diluted) than the solid and fluid volume fractions. In addition,
there are no chemical reactions between components, and inertial terms, body
forces and thermal eects are negligible. All the processes are adiabatic.

For the neuronal membrane we use the modified Hodgkin-Huxley equa-
tions given in [24] to model its macroscopic electrochemical dynamics of neu-
ron’s membrane. Hodkin-Huxley model introduces three ion gates, m, n, and
h, that produce action potentials by controlling the ionic flow into and out
the neuron. In [7] we proposed to use linear viscoelastic Maxwell fluids as
physical structures for m, n, and h. The physical analogy for these ionic
gates is a door closer. Given the empirical nature of the Hodgkin-Huxley
model and the current lack of knowledge of neuronal mechanotransduction,
we consider that the electric circuit and the Maxwell elements are indepen-
dent of each other.

The coupling of the triphasic porous medium and Maxwell mechanical
elements, and the Hodgkin-Huxley electric circuit is achieved by using a La-
grangian formulation and Hamilton’s principle as follows. We denote by
ρα, uα the mass concentration and, respectively, displacement in the La-
grangian description of component α, α = s, f, +, −, where s stands for the
solid phase, f for the fluid phase, + for Na+, and − for Cl−. Let ϕ be the
porosity, cα, α = +,− be the molar concentrations of the cation and anion,
and Mα, α = +,− be the molecular weights of the cation and anion. Then
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[23]:

ρα = ϕ cαMα, α = +,−

ρf = ϕρfT ,

ρs = (1− ϕ)ρsT , (1)

where ρsT , ρ
f
T are the constant mass densities of the solid and respectively

fluid phases which are incompressible in their unmixed states. Since the ionic
species (sodium and cloride) are in this case dilute solutes, the van’t Hoff law
is used to express the electrochemical potentials of the ionic species as:

µ̃+ = RT lnc+ + FΨ c+,

µ̃− = RT lnc− − FΨ c−, (2)

where R is the universal gas constant, T is the absolute temperature, F is
Faraday constant, and Ψ is the electric potential. For simplicity, in formu-
las (2) we made all the activity potential coefficients equal to 1. A simple
calculation that combines the first law of thermodynamics, Gibbs-Duhem
equation2, and Hooke’s law gives the following expression for the Gibbs free
energy G of the triphasic porous medium:(

ρs + ρf
)
G =RT ϕ(c+ln c+ + c−ln c−) + FΨϕ (c+ − c−)

+ρfT ϕ
µf

Mf
+ ρsT (1− ϕ)EA

(
∂us

∂x

)2

, (3)

where µf is the chemical potential of the fluid phase, Mf is the molecular
weight of the fluid phase, E is the Young’s elastic modulus of the solid phase,
and A is the constant cross-sectional area of the inside of the neuron (Fig.2).

Before moving forward, we belive that a clarification of the scientific lan-
guage used in the literature is needed here. We noticed that some authors
(see for instance [8]) used an equivalent expression for the Gibbs energy of
complex ionic fluids which is given as the negative of the product between
T and the so-called entropy of mixing whose expression is the same as that
of the classical Boltzmann entropy3. The first three terms on the right-hand
side of equation (3) were used in [8] without the porosity and thus they differ
by a factor NA, the Avogardo constant, from our terms in (3) and therefore
the concentrations used in [8] have to be understood as number concentra-
tions, rescaled molar concentrations by the same factor NA. In addition,
unlike other authors, we keep the chemical potential of the fluid phase as is
since it is connected to the fluid pressure p by the following formula:

p = µf + ∆π, (4)

2Gibbs-Duhem equation transforms the first law of thermodynamics into an exact 1-
form that can be integrated [11].

3Interested readers may find an insighful presentation on entropy in [3].



154 C.S. Drapaca

where ∆π is the difference between the osmotic pressures inside and out-
side the neuron. This is a very important observation, since the classical
approach used in fluid mechanics to introduce the pressure field of an incom-
pressible fluid cannot be invoked when working with complex ionic fluids as
some authors have done. This is because, in general, porous media are nei-
ther incompressible nor compressible4, they can be either saturated or not.
Thus the continuity equation of a porous medium is not a consequence of
incompressibility but rather a saturation constraint. Our view and physical
interpretation are in agreement for instance with [10, 21].

We now return our attention to the Lagrangian formulation of our prob-
lem. We introduce the Lagrangian form of the neuron and its membrane as
follows:

L =

∫ r0

0

[
1

2
ρfTϕ

(
∂uf

∂t

)2

+
1

2
ρsT (1− ϕ)

(
∂us

∂t

)2

− 1

2
EA

(
∂us

∂x

)2

− ρfTϕ
µf

Mf

−RTϕ
(
c+ln c+ + c−ln c−

)
− FΨϕ

(
c+ − c−

)
]dx

− 1

2C
q2C −

1

2
km(r + dm − m̃)2 − 1

2
kn(r + dn − ñ)2 − 1

2
kh(r + dh − h̃)2,

(5)

where r+dm, r+dn, and r+dh are the relative displacements of the Maxwell
elements representing the ionic gates m, n, and h introduced by the Hodgkin-
Huxley model, m̃, ñ, and h̃ are the displacements of the dashpots in these
Maxwell elements, and km, kn, and kh are the spring constants of the springs
in the Maxwell elements (see fig.2). In addition, C is the macroscopic ca-
pacitance of membrane’s lipid bilayer modelled as a capacitor of electric
charge qC , and let qNa, qK , and qCl be the electric charges of Na+, K+,
and Cl− channels, respectively. We notice that the integrand in equation
(5) is the difference between the total macro-kinetic energy of the solid and
fluid phases and the Gibbs free energy given by formula (3) of the triphasic
porous medium inside the neuron, the first term outside the integral repre-
sents a macro-potential electric energy of the membrane, and the last three
terms in equation (5) are micro-potential mechanical energies of the mem-
brane.

The conservation law of electric charges gives the constraint:

qC + qNa + qK + qCl = 0. (6)

We take us, uf , u+, u−, qNa, qK , qCl, m̃, ñ, and h̃ to be generalized coordi-
nates and introduce corresponding independent variations δus, δuf , δu+, δu−,

4In [5], de Boer showed a way to generalize the concept of macroscopic incompressibility
to mixtures. This is a very involved mathematical process and therefore it is rarely used
in modeling.
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δqNa, δqK , δqCl, δm̃, δñ, and δh̃ that vanish at some arbitrary times t1 and
t2.

We define now the virtual work done by non-conservative forces as:

δW =

∫ r0

0

{[
−η

(
∂

∂t

∂us

∂x
−

∂

∂t

∂uf

∂x

)
δ

(
∂us

∂x

)
+ η

(
∂

∂t

∂us

∂x
−

∂

∂t

∂uf

∂x

)
δ

(
∂uf

∂x

)]
+

[
−ϕ c+

(
∂

∂t

∂uf

∂x
−

∂

∂t

∂u+

∂x

)
δ

(
∂u+

∂x

)
+ ϕ c+

(
∂

∂t

∂uf

∂x
−

∂

∂t

∂u+

∂x

)
δ

(
∂uf

∂x

)]
+

[
−ϕ c−

(
∂

∂t

∂uf

∂x
−

∂

∂t

∂u−

∂x

)
δ

(
∂u−

∂x

)
+ ϕ c−

(
∂

∂t

∂uf

∂x
−

∂

∂t

∂u−

∂x

)
δ

(
∂uf

∂x

)]}
dx

−
[
RNa

(
dqNa

dt

)
δqNa +RK

(
dqK

dt

)
δqK +RCl

(
dqCl

dt

)
δqCl

]
−
[
ηm

(
dm̃

dt

)
δm̃+ ηn

(
dñ

dt

)
δñ+ ηh

(
dh̃

dt

)
δh̃

]
+[−ENaδqNa − EKδqK − EClδqCl] (7)

In formula (7) the terms inside the integral represent friction forces be-
tween two phases of the triphasic medium. As in [23], we neglected the
friction forces between the solid and ionic phases. We denoted by η the vis-
cosity of the fluid phase. The friction forces between the fluid and each ionic
species can be further written as [8]5:

ϕ cα
(
∂

∂t

∂2uf

∂x2
− ∂

∂t

∂2uα

∂x2

)
=
Dα

RT
ϕ cα

∂µ̃α

∂x
, α = +,− (8)

In equation (8) Dα is the diffusion coefficient of the ionic species α. We
notice that the left-hand side of equation (8) resembles the friction term in
the Navier-Stokes equations of a viscous Newtonian fluid.

The first two sets of parentheses outside the integral in formula (7) repre-
sent dissipative forces due to the resistors of resistances RNa, RK , and RCl
in the Hodgkin-Huxley electric circuit and due to the linear dashpots in the
Maxwell elements whose damping coefficients are ηm, ηn, and ηh. The last
set of parentheses in the expression of δW contains the generalized forces
ENa, EK , and ECl known as the reverse potentials of the Hodgkin-Huxley
model. The choice of signs in formula (7) guarantees that δW is thermody-
namically consistent.

The Euler-Lagrange equations are obtained from the non-conservative
form of the Hamilton’s principle [1]:∫ t2

t1

(δL+ δW) dt = 0. (9)

5The authors of [23] use different expressions for these friction forces.
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Lastly, the Kirchhoff’s current law:

d

dt
(CV + qNa + qK + ql) = I, (10)

is added to the system of differential equations. In equation (10) V = qC/C
is the electric potential of the capacitor, and I is a known external current
applied on the membrane.

In order to get the Euler-Lagrange equations, the Lagrangian variation
δL must be calculated. The difficulty in calculating this variation comes from
the fact that we do not acutally know all the relationships among the physical
parameters and evolving fields. For instance, by invoking the conservation of
mass of the solid phase in the reference configuration chosen to be the rest
state of the neuron and using the intrinsic incompressibility of this phase, it
can be shown that [23]:

ϕ = 1− 1− ϕ0

1 + e
(11)

where the dilatation is e =
∂us

∂x
. In [6, 7], we used the experimental ober-

vations reported in [26, 14] regarding the stiffening of the neuron during an
action potential to propose the following dynamics of the Young’s modulus:

E(m,n, h) = E0

(
1 +m3(1− h)n4

)
, (12)

where E0 is the Young’s modulus of the neuron in the rest state, and m =
m̃
r , n = ñ

r , h = h̃
r are non-dimensional displacements which we identify

with the variables representing the activations of the Na+ and K+ channels
and,respectively, the inactivation of Na+ channel. We could also assume
that the membrane acts like a parallel-plate capacitor and introduce [6, 7]:

C = cmÃ =
εÃ

r(1 + u/r)
≈ εÃ

r

(
1− u

r

)
, (13)

where Ã is the neuronal surface area, cm is the specific membrane capaci-
tance and ε is membrane’s permittivity.

Not only that formulas (12) and (13) have not been confirmed experimen-
tally but also there is very little known about the relationships among the
other physical parameters and quantities of the proposed model. In addi-
tion, most of the physical parameters needed by the model have not been yet
found experimentally. Given these limitations, we will not derive here the
Euler-Lagrange equations for this variational formulation. Instead, we will
propose a much simplified formulation which may not only be easier from a
mathematical point of view but also more suitable for practical applications.
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4 Simplified Model

If we assume that the neuron is near its rest state then the ionic concentra-
tions are approximately equal to their equilibrium values. In this case the
simplified biphasic swelling model proposed by [25] can be used instead of a
triphasic model with similar results. Thus, in this section we assume that the
inside of the neuron is a biphasic porous medium with only solid and fluid
phases of constant masses ms and respectively mf , and with us and uf the
corresponding displacements from the reference configuration chosen to be
the rest state of the neuron. In this case we also neglect the spatial variation
and thus the Lagrangian form given by (5) reduces to:

L =
1

2
mf

(
duf

dt

)2

+
1

2
ms

(
dus

dt

)2

− 1

2
k (us)

2

− 1

2C
q2C −

1

2
km(r + dm − m̃)2 − 1

2
kn(r + dn − ñ)2 − 1

2
kh(r + dh − h̃)2,

(14)

while the virtual work (7) becomes:

δW =

[
−η

(
dus

dt
− duf

dt

)
δus + η

(
dus

dt
− duf

dt

)
δuf
]

−
[
RNa

(
dqNa
dt

)
δqNa +RK

(
dqK
dt

)
δqK +RCl

(
dqCl
dt

)
δqCl

]
−

[
ηm

(
dm̃

dt

)
δm̃+ ηn

(
dñ

dt

)
δñ+ ηh

(
dh̃

dt

)
δh̃

]
+[−ENaδqNa − EKδqK − EClδqCl] + (p−∆π)Aδuf . (15)

Here k is the spring constant and η is the damping coefficient of the bipha-
sic medium. The generalized coordinates are now us, uf , qNa, qK , qCl, m̃, ñ,
and h̃.

If we assume further that all the parameters are constant except k =
k(m̃, ñ, h̃) that is assumed to be given by formula (12), then the variation
of the Lagrangian given by (14) can be easily calculated from:

δL = lim
ε→0

dL
dε

(qNa + εδqNa, qK + εδqK , qCl + εδqCl, u
s + εδus, uf + εδuf ,

m̃+ εδm̃, ñ+ εñ, h̃+ εh̃) (16)

By applying Hamilton’s principle (9) we obtain the following Euler-Lagrange
equations:
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ms d
2us

dt2
+ η

(
dus

dt
− duf

dt

)
+ kus = 0 (17)

mf d
2uf

dt2
− η

(
dus

dt
− duf

dt

)
= (p−∆π)A (18)

dm

dt
= −km

ηm
m+

km
ηm

(1 + dm/r)−
1

2ηm

∂k

∂m
(us)

2
(19)

dn

dt
= −kn

ηn
n+

kn
ηn

(1 + dn/r)−
1

2ηn

∂k

∂n
(us)

2
(20)

dh

dt
= −kh

ηh
h+

kh
ηh

(1 + dh/r)−
1

2ηh

∂k

∂h
(us)

2
(21)

−RNa
dqNa
dt

+ V − ENa = 0 (22)

−RK
dqK
dt

+ V − EK = 0 (23)

−RCl
dqCl
dt

+ V − ECl = 0 (24)

The physical parameters required by equations (19)-(21) are not known
so we will replace the right-hand sides of these equations by the expressions
from the modified Hodgkin-Huxley model [24] and thus obtain the following
system of equations:

dm

dt
= αm(1−m)− βmm (25)

dn

dt
= αn(1− n)− βnn (26)

dh

dt
= αh(1− h)− βhh (27)

(28)

where:

αm =
0.32(V + 54)

1− exp(−0.25(V + 54))
, βm =

0.28(V + 27)

(exp(0.2(V + 27))− 1)

αn =
0.032(V + 52)

1− exp(−0.2(V + 52))
, βn =

1

2
exp(−(V + 57)/40)

αh = 0.128exp(−(V + 50)/18), βh =
4

1 + exp(−0.2(V + 27))
(29)

Equations (22)-(24) are further substituted into Kirchhoff’s law (10) and
the relationships among each resistance and the corresponding conductances
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of ionic and leak ionic currents given in [24] were used to get:

C
dV

dt
=I −

(
GNam

3h+GNaL
)

(V − ENa)−
(
GKn

4 +GKL
)

(V − EK)

−GClL (V − ECl) , (30)

where the constant parameters GNa, GK , GNaL, GKL, and GClL represent
Na+ voltage-gated maximal conductance, K+ voltage-gated maximal con-
ductance, Na+ leak conductance, K+ leak conductance, and Cl− leak con-
ductance, respectively. Nernst equations provide the following expressions
for the reversal potentials [24]:

ENa = 26.64 ln

(
c+o
c+i

)
, ECl = 26.64 ln

(
c−i
c−o

)
, EK = 26.64 ln

(
[K+]o
[K+]i

)
, (31)

where the subscripts i and o represent concentrations inside and outside the
neuron, respectively, c+ is the concentration of Na+, c− is the concentra-
tion of Cl−, and [K+] is the concentration of K+. We assumed that EK is
constant (≈ −80mV ). If the outside concentrations of ions are known then
[K+]i can be found from the given value of EK and (31), while the inner con-
centrations of sodium and cloride are obtained from the Donnan equilibrium
[23, 25]:

c+i + [K+]i =
cF +

√
c2F + 4c2o
2

,

c−i =
−cF +

√
c2F + 4c2o

2
(32)

where co = c+o +c−o +[K+]o and cF is the fixed charged density (FCD). Then
the difference in osmotic pressures inside and outside the neuron is:

∆π =φiRT
(
[K+]i + c+i + c−i

)
− φoRT

(
[K+]o + c+o + c−o

)
=φiRT

√
c2F + 4c2o − 2φoRT co. (33)

where φi and φo are known internal and external osmotic coefficients, respec-
tively.

By combining the conservation of the mass density of FCD in a La-
grangian description and formula (11) the following expression is found:

cF = cFo

ϕ

ϕ− 1 + J
(34)

where cFo
is the FCD in a reference configuration and the porosity ϕ is

assumed to be constant in this case. In formula (34), J represents the ratio
of neuronal volume after deformation over the initial neuronal volume which
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could be find experimentally using for instance in-vivo optical imaging [13].
Lastly, values for k and η may be calculated from the parameters’ estimates
reported in [16, 26] where a linear viscoelastic Voigt model and experimental
observations were used. This can be achieved by using the method given in
[17] to build a mathematical mapping between the Voigt model of a neuron
(which we used in [6, 7]) and the presented biphasic model.

5 Conclusions

In this paper we presented the design of an implantable neuro-glial-vascular
unit that we called brain-on-a-chip which mimics some of the relevant struc-
tural and functional properties of a neuron, glial cell, and blood vessel. Such
a chip could be optimized to perform certain desired processes that facilitate
monitoring and supporting the proper functionality of the brain. We then
focused on the modeling of the mechano-electrochemistry of a neuron and its
membrane and introduced a constrained Lagrangian formulation that links
the Hodgkin-Huxley model of the electronic membrane and the motion and
diffusion processes of a triphasic porous medium that fills the inside of the
neuron. Lastly, a simplified Lagrangian formulation that is more suitable for
practical applications is given whose corresponding Euler-Lagrange equations
are obtained from the non-conservative form of Hamilton’s principle.

In our future work we intend to perform some computer simulations us-
ing the biphasic swelling model proposed here and compare the results with
those from our previous work [6, 7]. In particular, we will use the simplified
biphasic model to study whether a traumatic event such as jabbing causes a
neuronal mechanotransduction similar to the one reported in [6, 7], namely:
large sustained oscillations of neuronal volume and lack of action potentials.
We also plan to extend our model by adding mechano-electrochemical con-
tributions from the other components of the chip: glial cell and blood vessel.
We intend to apply the extended model to study the growth and rupture
of cerebral microaneurysms whose mathematical modeling has not been at-
tempted yet. Lastly, we plan to investigate how a brain-on-a-chip interacts
with the neuro-glial-vascular networks in the brain.
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