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1. Introduction

In this paper, we consider the following viscoelastic problem:

(1.1)


utt(x, t)−∆u(x, t) +

∫ +∞
0

g(s)∆u(x, t− s)ds+ σ(t)h(ut) = 0,

in Ω× (0,∞)

u(x, t) = 0, on ∂Ω× (0,∞)

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω× (0,∞)

where u denotes the transverse displacement of waves, Ω is a bounded domain
of RN (N ≥ 1) with a smooth boundary ∂Ω and g, h, σ are specific functions.
During the last half century, viscoelastic problems were studied by several
authors and many existence and long-time behavior results have been es-
tablished. We start with the pioneer work of Dafermos [13], [14], where he
considered the following one-dimensional viscoelastic problem

ρutt = cuxx −
∫ t

−∞
g(t− s)uxxds

and established various existence results and then proved, for smooth mono-
tone decreasing relaxation functions, that the solutions go to zero as t goes to
infinity. However, no rate of decay has been specified. Hrusa [21] considered
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a one-dimensional nonlinear viscoelastic equation of the form

utt − cuxx +

∫ t

0

m(t− s)(ψ(ux(x, s)))xds = f(x, t)

and proved several global existence results for large data. He also proved an
exponential decay result for strong solutions when m(s) = e−s and ψ satisfies
certain conditions. In [15], Dassios and Zafiropoulos considered a viscoelatic
problem in R3 and proved a polynomial deacy result for exponentially de-
caying kernels. In their book, Fabrizio and Morro [16] established a uniform
stability of some problems in linear viscoelasticity. After that, Rivera [31]
considered equations for linear isotropic homogeneous viscoelastic solids of
integral type which occupy bounded domains or the whole space Rn. In the
bounded-domain case and for exponentially decaying memory kernels and
regular solutions, he showed that the sum of the first and the second en-
ergy decays exponentially. For the whole-space case and for exponentially
decaying memory kernels, he showed that the rate of decay of energy is of
algebraic type and depends on the regularity of the solution. This result was
later generalized to a situation, where the kernel is decaying algebraically but
not exponentially by Cabanillas and Rivera [6]. In their paper, the authors
considered the case of bounded domains as well as the case when the mate-
rial is occupying the entire space and showed that the decay of solutions is
also algebraic, at a rate which can be determined by the rate of the decay
of the relaxation function. This latter result was later improved by Baretto
et al. [3], where equations related to linear viscoelastic plates were treated.
Precisely, they showed that the solution energy decays at the same decay rate
of the relaxation function. For partially viscoelastic materials, Rivera and
Salvatierra [38] showed that the energy decays exponentially, provided the
relaxation function decays in a similar fashion and the dissipation is acting
on a part of the domain near to the boundary. Also, Rivera et al. [35], [36]
established the same result as in [38] regardless to the size of the viscoelastic
part of the material. Fabrizio and Polidoro [17] studied the following problem{

utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ + ut = 0, in Ω× (0,∞)

u = 0, on ∂Ω× (0,∞)

and showed that the exponential decay of the relaxation function is a nec-
essary condition for the exponential decay of the solution energy. In [34], a
class of abstract viscoelastic equations of the form

(1.2) utt +Au(t) + βu(t)− (g ∗Aαu)(t) = 0,

for 0 ≤ α ≤ 1 and β ≥ 0, was investigated. The main focus was on the
case when 0 < α < 1 and the main result was that solutions for (1.2) decay
polynomially even if the kernel g decay exponentially. This result has been
generalized by Rivera et al. [33], where the authors studied a more general
abstract problem than (1.2) and established a necessary and sufficient con-
dition to obtain an exponential decay.
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For quasilinear problems, Cavalcanti et al. [7] studied, in a bounded domain,
the following equation

(1.3) |ut|ρutt −∆u−∆utt +

∫ t

0

g(t− τ)∆u(τ)dτ − γ∆ut = 0,

for ρ > 0. A global existence result for γ ≥ 0, as well as an exponential decay
result for γ > 0, have been established. This latter result was then extended
to a situation, where γ = 0, by Messaoudi and Tatar [29, 30], and exponential
and polynomial decay results have been established in the absence, as well as
in the presence, of a source term. In all the above mentioned works, the rates
of decay in relaxation functions were either of exponential or polynomial type.
Very recently, Messaoudi and Mustafa [28] considered (1.3), for relaxation
functions satisfying

g′(t) ≤ −H(g(t))

for some positive convex function H. They used the properties of the convex
functions together with the generalized Young inequality and established
a general decay result depending on g and H. For more general decaying
relaxation functions, Messaoudi [25, 26] considered

utt −∆u+

∫ t

0

g(t− τ)∆u(τ)dτ = b|u|p−2
u

for p ≥ 2 and b ∈ {0, 1}, and established a more general decay result, from
which the usual exponential and polynomial decay rates are only special
cases. In [10], Cavalcanti et al. considered

utt −∆u+

∫ t

0

g(t− s)∆u(x, s)ds+ a(x)ut + |u|p−1
u = 0, in Ω× (0,∞)

where a : Ω → R+ is a function which may vanish on a part of the domain
Ω but satisfies a(x) ≥ a0 on ω ⊂ Ω and g satisfies, for two positive constants
ξ1 and ξ2,

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0

and established an exponential decay result under some restrictions on ω.
Berrimi and Messaoudi [4] established the result of [10], under weaker condi-
tions on both a and g, to a problem where a source term is competing with
the damping term. Cavalcanti and Oquendo [11] considered the following
problem

utt − k0∆u+

∫ t

0

div[a(x)g(t− s)∆u(x, s)]ds+ b(x)h(ut) + f(u) = 0

and established, for a(x) + b(x) ≥ ρ > 0, an exponential stability result for g
decaying exponentially and h linear, and a polynomial stability result for g
decaying polynomially and h nonlinear.
For Frictional dissipative boundary condition, Lasiecka and Tataru [23] in-
vestigated problem (1.1) in the absence of the viscoelastic term (g=0) and,
without imposing any growth condition on h, they proved that the energy
decays as fast as the solution of an associated differential equation whose
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coefficients depend on the damping term. A nonlinear wave equation with
viscoelastic boundary condition was also studied by Rivera and Andrade
[32] and the existence and uniform decay results, under some restriction on
the initial data, were established. Santos [39] considered a one-dimensional
wave equation with viscoelastic boundary feedback and showed, under some
assumptions on both g′ and g′′, that the dissipation is strong enough to pro-
duce exponential (polynomial) decay of the solution, provided the relaxation
function also decays exponentially (polynomially) respectively. Cavalcanti et
al. [9] studied problem (1.1) but with finite memory and established a global
existence of strong as well as weak solutions and some uniform decay results
under quite restrictive assumptions on both the damping function h and the
kernel g. After that, Cavalcanti et al. [8] weakened the conditions on both
h and g and established a uniform stability depending on the behavior of h
and g.
For infinite history problems, Giorgi et al. [18] considered the following semi-
linear hyperbolic equation, in a bounded domain Ω ⊂ R3,

utt −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f

with K(0),K(∞) > 0 and K ′ ≤ 0 and gave the existence of global attractors
for the solutions. Conti and Pata [12] considered the following semilinear
hyperbolic equation with linear memory in a bounded domain Ω ⊂ Rn ,

(1.4) utt +αut −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f in Ω×R+

where the memory kernel is a convex decreasing smooth function such that
K(0) > K(∞) > 0 and g : R → R is a nonlinear function of at most
cubic growth satisfying some conditions and proved the existence of a regular
global attractor. In [1], Appleby et al. studied the linear integro-differential
equation

utt +Au(t) +

∫ t

−∞
K(t− s)Au(s)ds = 0, t > 0

and established results of exponential decay of strong solutions in a Hilbert
space. Pata [37] discussed the decay properties of the semigroup generated
by the following equation

utt + αAu(t) + βut(t)−
∫ +∞

0

µ(s)Au(t− s)ds = 0

where A is a strictly positive self-adjoint linear operator and α > 0, β ≥ 0
and the memory kernel µ is a decreasing function satisfying some specific
conditions. He established the necessary as well as the sufficient conditions
for the exponential stability. In [19], Guesmia considered

utt +Au−
∫ +∞

0

g(s)Bu(t− s)ds = 0.
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and, by introducing a new ingenuous approach based on the properties of
convex functions which allows a larger class of infinite-history kernels than
the one considered in the literature, he established a more general decay
result for a class of hyperbolic problems. Using this approach, Guesmia and
Messaoudi [20] later looked into

utt−∆u+

∫ t

0

g1(t−s)div(a1(x)∇u(s))ds+

∫ +∞

0

g2(s)div(a2(x)∇u(t−s))ds = 0

in a bounded domain and under suitable conditions on a1, a2 and for a wide
class of relaxation functions g1 and g2 which are not necessarily decaying
polynomially or exponentially, and established a general decay result from
which the usual exponential and polynomial decay rates are only special
cases. The rest of our paper is organized as follows. In section 2, we present
some material needed to prove our result. Some technical lemmas and the
statement with proof of the main result will be given in section 3.

2. Preliminaries

In this section, we present some materials needed in the proof of our results.
We use the standard Lebesgue space L2(Ω) and the Sobolev space H1

0 (Ω)
with their usual scalar products and norms. Throughout this paper, c is
used to denote a generic positive constant.

We consider the following hypotheses:

(A1) g : R+ → R+ is a C1 nonincreasing function satisfying

(2.1) g(0) > 0, 1−
∫ +∞

0

g(s)ds = ` > 0

and there exists a strictly increasing function G : R+ → R+ and strictly
convex on (0, r1], for some r1 > 0, of class C1(R+) ∩ C2(0,∞) satis-
fying

(2.2) G(0) = G′(0) = 0 and lim
t→+∞

G′(t) = +∞

such that

(2.3) sup
s∈R+

g(s)

G−1(−g′(s))
:= N2 <∞

(2.4)

∫ +∞

0

g(s)

G−1(−g′(s))
ds := N3 <∞

(A2) h : R → R is a nondecreasing C0 function such that there exists a
strictly increaing function h0 ∈ C1(R+), with h0(0) = 0, and positive
constants c1, c2, ε such that

(2.5)
h0(|s|) ≤ |h(s)| ≤ h−1

0 (|s|) for all |s| ≤ ε
c1|s| ≤ |h(s)| ≤ c2|s| for all |s| ≥ ε
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In addition, we assume that the function H, defined by H(s) =√
sh0(
√
s), is a strictly convex C2 function on (0, r2], for some r2 > 0,

when h0 is nonlinear.
(A3) σ : R+ → R+ is a nonincreasing differentiable function.
(A4) There exists a positive constant m0, such that

(2.6) ||∇u0(s)||2 ≤ m0, ∀s ≥ 0.

Remark 2.1. We can deduce using (A1) that if g′(s0) = 0 for some s0 ≥ 0,
then g(s) = 0 for all s ≥ s0.

Remark 2.2. Hypothesis (A2) implies that sh(s) > 0, for all s 6= 0.

Remark 2.3. By (A1), we easily deduce that limt→+∞ g(t) = 0. This implies
that
limt→+∞ (−g′(t)) can not be equal to a positive number, and so it is natural
to assume that limt→+∞ (−g′(t)) = 0. Hence, there is t1 > 0 large enough
such that g(t1) > 0 and

(2.7) max {g(t),−g′(t)} < min {r1, G(r1)}, ∀t ≥ t1.

We introduce the ”modified” energy associated to problem (1.1):

(2.8) E(t) =
1

2
||ut||22 +

1− `
2
|| ∇u||22 +

1

2
(go∇u)(t)

where

(go∇u)(t) =

∫ +∞

0

g(s)||∇u(t)−∇u(t− s)||22ds

Direct differentiation, using (1.1), leads to

(2.9) E′(t) =
1

2
(g′o∇u)(t)− σ(t)

∫
Ω

uth(ut)dx ≤ 0

Remark 2.4. By exploiting (2.6)-(2.8), we obtain ∀t, s ∈ R+

(2.10)

||∇u(t)−∇u(t− s)||22 ≤ 2||∇u(t)||22
+ 2||∇u(t− s)||22

≤ 4 sup
s>0
||∇u(s)||22

+ 2 sup
τ<0
||∇u(τ)||22

≤ 4 sup
s>0
||∇u(s)||22 + 2 sup

τ>0
||∇u0(τ)||22

≤ 8

1− `
E(0) + 2m2

0 := N1

For completeness we state, without proof, the following standard existence
and regularity result (see [24], [9]).

Proposition 2.5. Let (u0(., 0), u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume

(A1) − (A4) are satisfied, then problem (1.1) has a unique global (weak) so-
lution

u ∈ C(R+, H1
0 (Ω)) ∩ C1(R+, L2(Ω)).
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Moreover, if

(u0(., 0), u1) ∈
(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω)

then the solution satisfies

u ∈ L∞
(
R+, H2(Ω) ∩H1

0 (Ω)
)
∩W 1,∞ (R+, H1

0 (Ω)
)
∩W 2,∞ (R+, L2(Ω)

)
.

3. General decay

In this section we state and prove our main decay result which reads as
follows:

Theorem 3.1. Let (u0(., 0), u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that

(A1)− (A4) hold. Then, there exist positive constants k2 , k3, k4, δ1, ε0 such
that

(3.1) E(t) ≤ k4W
−1
1

(
k2

∫ t

0

σ(s)ds+ k3

)
, ∀t ≥ 0,

where

W1(t) =

∫ 1

t

1

W2(s)
ds and W2(t) = tG′ (δ1t)H

′ (ε0t)

The proof of Theorem 3.1 will be done through several Lemmas.

Lemma 3.2. For u ∈ H1
0 (Ω), we have∫

Ω

(∫ +∞

0

g(s)(u(t)− u(t− s))ds
)2

dx ≤ (1− `)C2
p(go∇u)(t),

where Cp is the Poincaré constant.

Lemma 3.3. Under the assumptions (A1)− (A3), the functional

ψ(t) :=

∫
Ω

uutdx

satisfies, along the solution, the estimate

(3.2) ψ′(t) ≤ − `
2
|| ∇u||22 + ||ut||22 + c(go∇u)(t) + c

∫
Ω

h2(ut)dx

Proof. Direct computations, using (1.1), yield

(3.3)

ψ′(t) =

∫
Ω

u2
tdx+

∫
Ω

u∆udx−
∫

Ω

u

∫ +∞

0

g(s)∆u(t− s)dsdx

− σ(t)

∫
Ω

uh(ut)dx

=

∫
Ω

u2
tdx− `

∫
Ω

|∇u|2dx− σ(t)

∫
Ω

uh(ut)dx

+

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx.
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Using Young’s inequality and Lemma 3.2, we obtain

(3.4)

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx

≤ δ
∫

Ω

|∇u|2dx+
1

4δ

∫
Ω

(∫ +∞

0

g(s)|∇u(t− s)−∇u(t)|ds
)2

dx

≤ δ
∫

Ω

|∇u|2dx+
c

δ
(go∇u)(t).

Also, the use of Young’s and Poincaré’s inequalities gives

(3.5)

− σ(t)

∫
Ω

uh(ut)dx ≤ cδ
∫

Ω

u2dx+
c

4δ

∫
Ω

h2(ut)dx

≤ cδ
∫

Ω

|∇u|2dx+
c

4δ

∫
Ω

h2(ut)dx.

Combining (3.3)-(3.5) and choosing δ small enough give (3.2). �

Lemma 3.4. Under the assumptions (A1)− (A4), the functional

(3.6) χ(t) := −
∫

Ω

ut

∫ +∞

0

g(s)(u(t)− u(t− s))dsdx

satisfies, along the solution, the estimate

(3.7)
χ′(t) ≤ `

4
|| ∇u||22 − (1− `− `

4
)||ut||22 +

4c

`
(go∇u)(t)

− 4c

`
(g′o∇u)(t) + c

∫
Ω

h2(ut)dx
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Proof. By differentiating (3.6), using (1.1), and performing integration by
parts, we arrive at

χ′(t) =

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx

−
∫

Ω

(∫ +∞

0

g(s)∇u(t− s)ds
)
.

(∫ +∞

0

g(s)(∇u(t− s)−∇u(t))ds

)
dx

+

∫
Ω

(∫ +∞

0

g(s)(u(t− s)− u(t))ds

)
h(ut)dx

−
∫

Ω

ut

∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx− (1− `)
∫

Ω

ut
2dx

= `

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx

+

∫
Ω

∣∣∣∣ ∫ +∞

0

g(s)(∇u(t− s)−∇u(t))ds

∣∣∣∣2dx
+

∫
Ω

(∫ +∞

0

g(s)(u(t− s)− u(t))ds

)
h(ut)dx

−
∫

Ω

ut

∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx− (1− `)
∫

Ω

u2
tdx.

Using Young’s inequality and Lemma 3.2, we obtain

`

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx ≤ δ
∫

Ω

|∇u|2dx+
c

δ
(go∇u)(t)

∫
Ω

(∫ +∞

0

g(s)(u(t− s)− u(t))ds

)
h(ut)dx ≤ c(go∇u)(t) + c

∫
Ω

h2(ut)dx

and

−
∫

Ω

ut

∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx ≤ δ
∫

Ω

u2
tdx−

c

δ
(g′o∇u)(t).

Combining all the above estimates and putting δ = `
4 , (3.7) is established. �

Lemma 3.5. Assume that (A1) − (A4) hold. Then there exist constants
M1,M2,m, c > 0 such that the functional

L(t) = M1E(t) +M2χ(t) + ψ(t)

satisfies, for all t ∈ R+,

(3.8) L′(t) ≤ −mE(t) + c(go∇u)(t) + c

∫
Ω

h2(ut)dx

Proof. By using (2.9), (3.2), (3.7), we easily see that
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L′(t) ≤ − `
4
|| ∇u||22 −

(
M2

(
1− `− `

4

)
− 1

)
||ut||22 +

(
4c

`
M2

2 + c

)
(go∇u)(t)

+

(
1

2
M1 −

4c

`
M2

2

)
(g′o∇u)(t) + (cM2 + c)

∫
Ω

h2(ut)dx.

At this point, we choose M2 large enough so that

α := M2

(
1− `− `

4

)
− 1 > 0,

and then M1 large enough that

1

2
M1 −

4c

`
M2

2 > 0.

So, we arrive at

(3.9) L′(t) ≤ − `
4
|| ∇u||22 − α||ut||

2
2 + c(g′o∇u)(t) + c

∫
Ω

h2(ut)dx

Therefore, (3.9) reduces to (3.8) for two positive constants m and c. On the
other hand (see [4]), we can choose M1 even larger (if needed)
so that

(3.10) L ∼ E
�

Lemma 3.6. Assume that (A1) and (A4) are satisfied. Then there exists
β1 > 0 such that for all δ0 <

r1
E(0) and t ∈ R+,

(3.11) G′(δ0E(t))(go∇u)(t) ≤ −β1E
′(t) + β1δ0E(t)G′(δ0E(t))

Proof. First, using Remark (2.1), we can assume without loss of generality
that g′ < 0.

Using (2.7) and (2.10), we easily prove that

t1 := G−1

(
−g′(s)
N1

||∇u(t)−∇u(t− s)||22

)
≤ r1

Now, define

t2 :=
G′(δ0E(t))g(s)||∇u(t)−∇u(t− s)||22

N1N2G−1
(
−τ2g′(s)||∇u(t)−∇u(t− s)||22

)
Using the fact that G−1 is concave and G−1(0) = 0, the function K(s) =

s
G−1(s) satisfies, for any 0 ≤ s1 < s2,

K(s1) =
s1

G−1
(
s1
s2
s2 +

(
1− s1

s2

)
0
)

≤ s1

s1
s2
G−1(s2) +

(
1− s1

s2

)
G−1(0)

=
s2

G−1(s2)
= K(s2)
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Therefore, using (2.10) and the fact that K is nondecreasing, we get

(3.12)

G′(δ0E(t))g(s)||∇u(t)−∇u(t− s)||22
N1N2G−1

(
−g′(s)
N1
||∇u(t)−∇u(t− s)||22

)
=
G′(δ0E(t))g(s)

−N2g′(s)
K

(
−g′(s)
N1

||∇u(t)−∇u(t− s)||22

)
≤ G′(δ0E(t))g(s)

−N2g′(s)
K (−g′(s))

≤ G′(δ0E(t))g(s)

N2G−1(−g′(s))

Using (2.3) and choosing δ0 <
r1
E(0) , inequality (3.12) gives

(3.13) t2 < G′(r1)

Let G∗ be the convex conjugate of G in the sense of Young (see [2] p.61-64);
then

(3.14)
G∗(t) = t(G′)−1(t)−G

(
(G′)−1(t)

)
≤ t(G′)−1(t), ∀t ∈ (0, G′(r1)]

Using the general Young inequality: t1t2 ≤ G(t1) + G∗(t2), we get for all
t ∈ R+,

(go∇u)(t) =

∫ +∞

0

g(s)||∇u(t)−∇u(t− s)||22ds

=
N1N2

G′(δ0E(t))

∫ ∞
0

{
G−1

(
−g′(s)
N1

||∇u(t)−∇u(t− s)||22

)
×

G′(δ0E(t))g(s)||∇u(t)−∇u(t− s)||22
N1N2G−1

(
−g′(s)
N1
||∇u(t)−∇u(t− s)||22

)}ds
≤ − N2

G′(δ0E(t))
(g′o∇u)(t)

+
N1N2

G′(δ0E(t))

∫ ∞
0

G∗

 G′(δ0E(t))g(s)||∇u(t)−∇u(t− s)||22
N1N2G−1

(
−g′(s)
N1
||∇u(t)−∇u(t− s)||22

)
 ds

Combing (2.9) and (3.14), we have for all t ∈ R+,
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(3.15)

(go∇u)(t) ≤ − 2N2

G′(δ0E(t))
E′(t)

+

∫ +∞

0

{
g(s)||∇u(t)−∇u(t− s)||22

G−1
(
−g′(s)
N1
||∇u(t)−∇u(t− s)||22

)
× (G′)−1

 G′(δ0E(t))g(s)||∇u(t)−∇u(t− s)||22
N1N2G−1

(
−g′(s)
N1
||∇u(t)−∇u(t− s)||22

)
}ds

Therefore, using (2.10), (3.13) and the fact that (G′)−1 is nondecreasing
on (0, G′(r1)], we get

(G′)−1

 G′(δ0E(t))g(s)||∇u(t)−∇u(t− s)||22
N1N2G−1

(
−g′(s)
N1
||∇u(t)−∇u(t− s)||22

)


≤ (G′)−1

(
G′(δ0E(t))g(s)

N2G−1(−g′(s))

)
Thus, we obtain from (3.15) and (2.10) that, for all t ∈ R+,

(go∇u)(t) ≤ − 2N2

G′(δ0E(t))
E′(t)

+N1

∫ +∞

0

g(s)

G−1(−g′(s))
(G′)−1

(
G′(δ0E(t))g(s)

G−1(−g′(s))

)
ds

Using (2.3) and (2.4) and recalling that (G′)−1 is nondecreasing on (0, G′(r1)],
we obtain, for all t ∈ R+

(go∇u)(t) ≤ − 2N2

G′(δ0E(t))
E′(t)

+N1(G′)−1 (τ1N1N2G
′(δ0E(t)))

∫ +∞

0

g(s)

G−1(−g′(s))
ds

≤ − 2N2

G′(δ0E(t))
E′(t) +N1N3δ0E(t),

which gives (3.11) with β1 = max{2N2, N1N3} �

Proof of Theorem 3.1

Case 1. h0 is linear. Then, using (A2) we have

c′1|s| ≤ |h(s)| ≤ c′2|s|, ∀s ∈ R

and hence

(3.16) h2(s) ≤ c′2sh(s), ∀s ∈ R
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Therefore, after multiplying (3.8) by σ(t) and using (2.9) and (3.16), we
obtain

σ(t)L′(t) ≤ −mσ(t)E(t) + cσ(t)(go∇u)(t) + cσ(t)

∫
Ω

uth(ut)dx

≤ −mσ(t)E(t) + cσ(t)(go∇u)(t)− cE′(t), ∀t ≥ 0

Consequently, F0(t) := σ(t)L(t) + cE(t) satisfies

(3.17) F ′0(t) ≤ −mσ(t)E(t) + cσ(t)(go∇u)(t)

and recalling (3.10) and (A3), we have F0 ∼ E. Now, we multiply (3.17) by
G′(δ0E(t)) and use (3.11) to obtain:

G′(δ0E(t))F ′0(t) ≤ −mσ(t)G′(δ0E(t))E(t)− cβ1σ(t)E′(t)

+ cβ1δ0σ(t)E(t)G′(δ0E(t))

= −(m− cβ1δ0)σ(t)E(t)G′(δ0E(t))− cβ1σ(t)E′(t)

Choosing δ0 small enough so that β2 := m− cβ1δ0 > 0 and put

F1(t) := G′(δ0E(t))F0(t) + cβ1σ(t)E(t)

we deduce (note that G′(δ0E(t)) is nonincerasing for δ0 <
r1
E(0) ) that

F1 ∼ E and F ′1(t) ≤ −k1σ(t)F1(t)G′(δ1F1(t))

The last inequality implies that (W1(F1))
′ ≥ k1σ(t), where

W1(t) =

∫ 1

t

1

W2(s)
ds and W2(s) = sG′(δ1s)

for 0 < t ≤ 1. Then, by integrating over [0, t], we get,

(3.18) F (t) ≤W−1
1

(
k1

∫ t

0

σ(s)ds+ k2

)
, ∀t ∈ R+

The equivalence F1 ∼ E and (3.18) give the desired result.

Case 2. h0 is nonlinear on [0, ε].
First, we assume that max {r2, h0(r2)} < ε; otherwise we take r2 smaller.
Let ε1 = min {r2, h0(r2)}.
Now, using (A2), we have, for ε1 ≤ |s| ≤ ε,

|h(s)| ≤ h−1
0 (|s|)
|s|

|s| ≤ h−1
0 (|ε|)
|ε1|

|s|

and

|h(s)| ≥ h0(|s|)
|s|

|s| ≥ h0(|ε1|)
|ε|

|s|

So, we deduce that

(3.19)

{
h0(|s|) ≤ |h(s)| ≤ h−1

0 (|s|) for all |s| < ε1

c′1|s| ≤ |h(s)| ≤ c′2|s| for all |s| ≥ ε1
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Using (3.19), we get for all |s| ≤ ε1

H(h2(s)) = |h(s)|h0(|h(s)|) ≤ sh(s)

which gives

(3.20) h2(s) ≤ H−1(sh(s)) for all |s| ≤ ε1

To estimate the last integral in (3.8), we define the following partition which
was introduced by Komornik [22]:

Ω1 = {x ∈ Ω : |ut| > ε1}, Ω2 = {x ∈ Ω : |ut| ≤ ε1}

Using (3.19), we get on Ω2

(3.21) uth(ut) ≤ ε1h
−1
0 (ε1) ≤ h0(r2)r2 = H(r2

2)

Then, with J(t) defined by

J(t) :=
1

|Ω2|

∫
Ω2

uth(ut)dx

Jensen’s Inequality gives

(3.22) H−1 (J(t)) ≥ c
∫

Ω2

H−1(uth(ut))dx

Thus, combining (2.9), (3.19) and (3.22), we arrive at

(3.23)

σ(t)

∫
Ω

h2(ut)dx = σ(t)

∫
Ω2

h2(ut)dx+ σ(t)

∫
Ω1

h2(ut)dx

≤ σ(t)

∫
Ω2

H−1 (uth(ut)) dx+ σ(t)

∫
Ω1

h2(ut)dx

≤ cσ(t)H−1(J(t))− cE′(t)

Therefore, after multiplying (3.8) by σ(t) and using (3.23), we get

(3.24) L′0(t) ≤ −mσ(t)E(t) + cσ(t)(go∇u)(t) + cσ(t)H−1(J(t)), ∀t ≥ 0

where L0 = σL+ cE, which is clearly equivalent to E.
Now, for ε0 < r2

2 and c0 > 0, let

L1(t) := H ′
(
ε0
E(t)

E(0)

)
L0(t) + c0E(t)

By using the properties of E and H, we can conclude that L1 satisifies

(3.25)

L′1(t) ≤ −mσ(t)E(t)H ′
(
ε0
E(t)

E(0)

)
+ cσ(t)H−1 (J(t))H ′

(
ε0
E(t)

E(0)

)
+ c0E

′(t) + cH ′
(
ε0
E(t)

E(0)

)
(go∇u)(t)

Let H∗ be the convex conjugate of H in the sense of Young, then

(3.26)
H∗(s) = s(H ′)−1(s)−H[(H ′)−1(s)] if s ∈ (0, H ′(r2)]

≤ s(H ′)−1(s)
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Using the general Young inequality:

AB ≤ H∗(A) +H(B), if A ∈ (0, H ′(r2)], B ∈ (0, r2]

for

A = H ′
(
ε0
E(t)

E(0)

)
and B = H−1 (J(t))

we get

L′1(t) ≤ −mσ(t)E(t)H ′
(
ε0
E(t)

E(0)

)
+ cε0σ(t)

E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
− cE′(t)

+ c0E(t) + cσ(t)H ′
(
ε0
E(t)

E(0)

)
(go∇u)(t)

= −(mE(0)− cε0)σ(t)
E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
− (c− c0)E′(t)

+ cσ(t)H ′
(
ε0
E(t)

E(0)

)
(go∇u)(t)

Consequently, with a suitable choice of ε0 and c0. We obtain, for all t ≥ 0

(3.27) L′2(t) ≤ −kσ(t)
E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
+ cσ(t)H ′

(
ε0
E(t)

E(0)

)
(go∇u)(t)

where L2(t) = L1(t) + (c − c0)E(t). Multiply (3.27) by G′ (δ0E(t)) and use
(3.11), we obtain
(3.28)

G′ (δ0E(t))L′2(t) ≤ −kσ(t)
E(t)

E(0)
G′ (δ0E(t))H ′

(
ε0
E(t)

E(0)

)
− β2σ(t)E′(t)H ′

(
ε0
E(t)

E(0)

)
+ β2δ0σ(t)E(t)H ′

(
ε0
E(t)

E(0)

)
G′ (δ0E(t))

≤ −kσ(t)
E(t)

E(0)
G′ (δ0E(t))H ′

(
ε0
E(t)

E(0)

)
− CE′(t)

+ β2δ0σ(t)E(t)H ′
(
ε0
E(t)

E(0)

)
G′ (δ0E(t))

Now, using (3.28) and the fact that E′ ≤ 0 and G′′ > 0 for δ0 <
r1
E(0) , we

find that the functional L3 defined by

L3(t) := G′ (δ0E(t))L2(t) + CE(t)

satisfies, for some α1, α2 > 0

(3.29) α1L3(t) ≤ E(t) ≤ α2L3(t)
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and

(3.30)

L′3(t) ≤ −kσ(t)
E(t)

E(0)
G′ (δ0E(t))H ′

(
ε0
E(t)

E(0)

)
+ β2δ0σ(t)E(t)H ′

(
ε0
E(t)

E(0)

)
G′ (δ0E(t))

= − (k − β2δ1)σ(t)
E(t)

E(0)
G′
(
δ1
E(t)

E(0)

)
where δ1 = E(0)δ0
After choosing δ0 small enough so that k1 := k − β2δ1 > 0, (3.30) becomes
(3.31)

L′3(t) ≤ −k1σ(t)
E(t)

E(0)
G′ (δ1E(t))H ′

(
ε0
E(t)

E(0)

)
= −k1σ(t)W2

(
E(t)

E(0)

)
where H2(t) = tH ′(ε0t)G

′(δ1t). Thus, with R(t) = α1L3(t)
E(0) and using (3.29)

and (3.31), we have

(3.32) R(t) ∼ E(t)

and, for some k2 > 0

(3.33) R′(t) ≤ −k2σ(t)W2(R(t))

Inequality (3.33) implies that (W1(R))
′ ≥ k2σ(t), where

W1(t) =

∫ 1

t

1

W2(s)
ds for t ∈ (0, 1]

Then, by integrating over [0, t], we get

(3.34) R(t) ≤W−1
1

(
k2

∫ t

0

σ(s)ds+ k3

)
, ∀t ∈ R+

Finally, we obtain (3.1) by combing (3.32) and (3.34)
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[33] Muñoz Rivera J., Naso N., Asymptotic stability of semigroups associated to weak
dissipative systems with memory, J. Math. Anal. Appl. 326 # 1, 691-707 (2007)
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