Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016) 365-377 Copyright ©2016 Watam Press

http://www.watam.org

EXISTENCE OF BOUND STATES FOR (N+1)-COUPLED LONG-WAVE–SHORT-WAVE INTERACTION EQUATIONS

Sharad Silwal

Jefferson College of Health Sciences 101 Elm Ave SE, Roanoke, VA 24013, USA

Abstract. We prove the existence of an infinite family of smooth positive bound states for (N+1)-coupled long-wave–short-wave interaction equations. The system describes the interaction between N short waves and a long wave and is of interest in physics and fluid dynamics. The existence result is obtained using the variational technique based on the concentration compactness principle.

Keywords. nonlinear Schrödinger-type equation ; Korteweg de Vries-type equation ; long-wave-short-wave interaction ; bound-state solutions ; existence

AMS (MOS) subject classification: 35Q53, 35Q55, 35A15, 35B35.

1 Introduction

A non-linear system of interaction between a complex short-wave field u and a real long-wave field v of the form

$$\begin{cases} i\partial_t u + \partial_x^2 u = \alpha uv + \beta |u|^2 u\\ \partial_t v + \partial_x^3 v + v \partial_x v = \gamma \partial_x \left(|u|^2 \right), \end{cases}$$
(1.1)

was first studied in [24] concerning the well-posedness of the Cauchy problem. The system (1.1) which has an interaction between a nonlinear Schrödinger (NLS)-type short wave and a Korteweg de Vries (KdV)-type long wave appears in a wide variety of physical systems. The reader may refer to [3] for a general theory of the non-linear long-wave-short-wave interaction (L-SI) model. Numerous successful applications of the LSI model exist in different contexts of fluid dynamics such as capillary-gravity waves in [17], sonic-Langmuir solitons in [16, 25], Alfvén waves in [23], and Bose-Einstein condensates in [20], to mention but a few.

Let us consider the multicomponent LSI system

$$\begin{cases} i\partial_t u_j + \partial_x^2 u_j = \alpha_j u_j v + \beta_j |u_j|^2 u_j, \ j = 1, 2, \dots N, \\ \partial_t v + \partial_x^3 v + v \partial_x v = \frac{1}{2} \alpha_j \ \partial_x \left(\sum_{j=1}^N |u_j|^2 \right), \end{cases}$$
(1.2)