Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016) 341-364 Copyright ©2016 Watam Press

http://www.watam.org

OPTIMAL CONTROL WITH FINAL OBSERVATION OF A FRACTIONAL DIFFUSION WAVE EQUATION

G. Mophou^{1,2} and C. Joseph³

¹Laboratoire CEREGMIA Université des Antilles et de la Guyane,Campus Fouillole, Guadeloupe ²Laboratoire MAINEGE

Université Ouaga 3S, Ouagadougou 06, Burkina Faso

³Laboratoire CEREGMIA Université des Antilles et de la Guyane,Campus Fouillole, Guadeloupe

Abstract. We consider a controlled fractional diffusion wave equation involving Riemann-Liouville fractional derivative or order $\alpha \in (3/2, 2)$. First we prove by means of eigenfunction expansions the existence of solutions to such equations. Then we show that we can approach the fractional integral of order $2 - \alpha$ of the state at final time by a desired state by acting on the control. Using the first order Euler-Lagrange optimality, we obtain the characterization of the optimal control.

Keywords. Riemann-Liouville fractional derivative; Caputo fractional derivative; Initial value /boundary value problem.

AMS (MOS) subject classification: 49J20, 49K20, 26A33.

1 Introduction

Let $n \in \mathbb{N}^*$ and Ω be a bounded open subset of \mathbb{R}^n with boundary $\partial \Omega$ of class C^2 . For the time T > 0, we set $Q = \Omega \times]0, T[$ and $\Sigma = \partial \Omega \times]0, T[$, and we consider the following fractional diffusion wave equation:

$$D_{RL}^{\alpha}y(x,t) - \Delta y(x,t) = v(x,t) \quad (x,t) \in Q$$

$$y(\sigma,t) = 0 \quad (\sigma,t) \in \Sigma$$

$$I^{2-\alpha}y(x,0^{+}) = y^{0} \quad x \in \Omega$$

$$\frac{d}{dt}I^{2-\alpha}y(x,0^{+}) = y^{1} \quad x \in \Omega$$
(1)

where $1 < \alpha < 2$, $y^0 \in H^2(\Omega) \cap H_0^1(\Omega)$, $y^1 \in L^2(\Omega)$ and $v \in L^2(Q)$. $I^{2-\alpha}y(x, 0^+) = \lim_{t \to 0} I^{2-\alpha}y(x,t)$ and $\frac{d}{dt}I^{2-\alpha}y(x,0^+) = \lim_{t \to 0} \frac{d}{dt}I^{2-\alpha}y(x,t)$ where the fractional integral I^{α} of order α and the fractional derivative D_{RL}^{α} of order α are to be understood in the Riemann-Liouville sense.

There are many works on fractional diffusion wave equation. For instance, Mainardi et al. [18, 19] generalized the diffusion equation by replacing the first