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Abstract. We consider a controlled fractional diffusion wave equation involving Riemann-Liouville
fractional derivative or order α ∈ (3/2,2). First we prove by means of eigenfunction expansions the
existence of solutions to such equations. Then we show that we can approach the fractional integral of
order 2−α of the state at final time by a desired state by acting on the control. Using the first order
Euler-Lagrange optimality, we obtain the characterization of the optimal control.
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1 Introduction
Let n ∈ N∗ and Ω be a bounded open subset of Rn with boundary ∂Ω of class C 2.
For the time T > 0, we set Q = Ω×]0,T [ and Σ = ∂Ω×]0,T [, and we consider
the following fractional diffusion wave equation:

Dα
RLy(x, t)−∆y(x, t) = v(x, t) (x, t) ∈ Q

y(σ, t) = 0 (σ, t) ∈ Σ

I2−αy(x,0+) = y0 x ∈Ω

d
dt

I2−αy(x,0+) = y1 x ∈Ω

(1)

where 1<α< 2, y0 ∈H2(Ω)∩H1
0 (Ω), y1 ∈L2(Ω) and v∈L2(Q). I2−αy(x,0+)=

lim
t→0

I2−αy(x, t) and
d
dt

I2−αy(x,0+) = lim
t→0

d
dt

I2−αy(x, t) where the fractional integral

Iα of order α and the fractional derivative Dα
RL of order α are to be understood in

the Riemann-Liouville sense.
There are many works on fractional diffusion wave equation. For instance,

Mainardi et al. [18, 19] generalized the diffusion equation by replacing the first


