Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016) 273-283 Copyright ©2016 Watam Press

http://www.watam.org

POSITIVE SOLUTIONS FOR A CLASS OF MULTIPARAMETER ELLIPTIC SYSTEMS

A. Abebe¹, M. Chhetri² and R. Shivaji²

 $^{1}\mathrm{Department}$ of Mathematics and Statistics The University of North Carolina at Greensboro, Greensboro, NC 27402

²Department of Mathematics Temple University, Philadelphia, PA 19122 Corresponding author email: shivaji@uncg.edu

Abstract. We consider an elliptic system of the form

$-\Delta_p u = \lambda_1 f_1(u) + \mu_1 \frac{g_1(v)}{v^{\alpha_1}}$	$_{ m in}$	Ω;	
$-\Delta_q v = \lambda_2 \frac{f_2(u)}{u^{\alpha_2}} + \mu_2 g_2(v)$	in	$\Omega;$	ł
u = v = 0	on	$\partial \Omega$,	J

where p, q > 1, $\Delta_m w := |\nabla w|^{m-2} \nabla w$ is the *m*-Laplacian operator for m > 1, $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary, $\lambda_i, \mu_i > 0$ are parameters and $0 \le \alpha_i < 1$ are fixed constants for i = 1, 2. The nonlinearities $f_i, g_i : [0, \infty) \to \mathbb{R}$ are continuous functions satisfying certain p, q-sublinear or combined sublinear conditions at infinity. When $g_1(0) < 0$ and $f_2(0) < 0$, we discuss existence of a positive solution for $\lambda_i + \mu_i >> 1$ for i = 1, 2. We also discuss a multiplicity result when $\alpha_1 = 0 = \alpha_2$. Method of sub- and supersolutions are employed to establish these results.

Keywords. Elliptic systems, *p*-Laplacian, sublinear, multiparameter, positive solutions, infinite semipositone, existence, multiplicity

AMS (MOS) subject classification: 35J60

1 Introduction

We consider an elliptic system of the form

$$-\Delta_p u = \lambda_1 f_1(u) + \mu_1 \frac{g_1(v)}{v^{\alpha_1}} \quad \text{in} \quad \Omega; \\ -\Delta_q v = \lambda_2 \frac{f_2(u)}{u^{\alpha_2}} + \mu_2 g_2(v) \quad \text{in} \quad \Omega; \\ u = v = 0 \quad \text{on} \quad \partial\Omega, \end{cases}$$

$$(1.1)$$

where $\Delta_m w := |\nabla w|^{m-2} \nabla w$ is the *m*-Laplacian operator for m > 1 and $\Omega \subset \mathbb{R}^N$; $N \ge 1$, is a bounded domain with smooth boundary (a bounded interval if N = 1). For $i = 1, 2, 0 \le \alpha_i < 1$ are fixed constants and $\lambda_i, \mu_i > 0$ are parameters.

The nonlinearities f_i , $g_i : [0, \infty) \to \mathbb{R}$ are continuous functions such that $g_1(0) < 0$ and $f_2(0) < 0$. Let $\tilde{g}_1(s) := \frac{g_1(s)}{s^{\alpha_1}}$ and $\tilde{f}_2(s) := \frac{f_2(s)}{s^{\alpha_2}}$. We make the following assumptions: