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Abstract. We prove an analog of Donsker’s Theorem for Backward Stochastic Differential
Equations subject to reflections by random barriers at finitely many points in [0,T]. The
discretization gives rise to an algorithm that is shown to converge to the exact solution
uniformly in probability.
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1 Introduction
Backward Stochastic Differential Equations (BSDEs), often referred to as
Forward Backward Stochastic Differential Equations (FBSDEs), originated
during the 1990-ties in a series of works by Pardoux, Peng and El-Karoui
[6], [4], [5]. Over the past two decades BSDEs became a subject of intense
research and showed direct connections to the Partial Differential Equations
(PDEs), with numerous applications to Optimal Control Theory and Quan-
titative Finance. A continued interest in BSDEs culminated in the recent
monographs on the subject by Touzi [9], Crépey [2], Delong [3], Pardoux and
Răs̨canu [7], which further underscore its growing relevance and generate an
interest in the development of effective numerical solution algorithms.

We recall that while classical linear parabolic PDE theory provides closed for-
m solution for the density p(t, x) of diffusion process through the Feynman-
Kac formula, the non-linear PDEs lack this property and instead one solves
SDE running back in time, whose initial (deterministic) value coincides with
p(t, x). Key features of FBSDEs are as follows: can solve semi-linear PDEs,
provides an alternative to numerical schemes for PDEs, allow non-smooth
coefficients in the PDEs (which typically cannot be handled by classical de-
terministic methods).


