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Abstract. In this work, we study two modified proximal point algorithms in the frame-

work of Hilbert spaces. We then prove the strong convergence theorem under some suitable

conditions. Finally we provide some examples including numerical results for supporting

the main theorem.
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1 Introduction

Let H be a real Hilbert space. Recall that an operator A is said to be
monotone if 〈u− v, x− y〉 ≥ 0, for any u ∈ Ax and v ∈ Ay. A monotone A
is said to be maximal monotone if its graph {(x, y) : x ∈ D(A), y ∈ Ax} is
not properly contained in the graph of any other monotone operator. Let β
be a positive real number and let the resolvent of a monotone operator A be
denoted by Jβ := (I + βA)−1 .

One of the major problem in optimization theory is to find x̂ ∈ D(A)
such that 0 ∈ Ax̂. This problem is often called the inclusion problem. It is
important because it includes, as spacial, convex programming, minimization
problem and linear inverse problem. A well-known method for solving the
inclusion problem is the proximal point algorithm (PPA) (see [11]). The PPA
generates a sequence as follows:

xn+1 = Jβn
(xn + en), n ≥ 0 (1.1)

where x0 ∈ H is a given starting point, βn ≥ β > 0 and (en) is the error
sequence. It was proved that the PPA converges weakly to a zero point of
A. Since then, there have been many modifications of the PPA established
in the literature (see, for instance [1, 2, 4, 5, 6, 8, 10, 12, 13, 14, 15]).


