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Abstract. This project is devoted to developing Liapunov direct method for fractional differ-

ential equations. The method consists of constructing a system related scalar function which

enables investigators to analyze the qualitative behavior of solutions of a differential equation

without actually finding its solutions. We first convert a class of fractional differential equa-

tions to integral equations with singular kernels and then construct Liapunov functionals for

the integral equations to deduce conditions on boundedness, stability, and Lp-solutions. It

has long been our view that, since the fractional differential equation can be written as an

integral equation with a completely monotone kernel, it is possible to construct a Liapunov

functional that is of positive type. This is another installment supporting that belief.
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1 Introduction

We study the stability properties of a fractional differential equation of Caputo
type

cDqx = −ax(t) +G(t, x), x(0) = x0, 0 < q < 1, (1.1)

with a > 0 and G : [0,∞) × < → < being continuous. Under this continuity
condition, it has been shown that the initial value problem (1.1) can be inverted
to the nonlinear Volterra integral equation of the second kind

x(t) = x(0) +
1

Γ(q)

∫ t

0

(t− s)q−1 [−ax(s) +G(s, x(s))] ds (1.2)

where Γ is the gamma function (Diethelm and Ford [14], Lakshmikantham et al
[17, p.54]). We observe that (1.2) is a singular integral equation with a convex
kernel. If (1.1) is written in a special form

cDqx = ax(t) + g(t, x(t)), x(0) = x0, 0 < q < 1, (1.3)

where a is a constant, then the solution of (1.3) is given by

x(t) = Φ0(t)x0 +

∫ t

0

Φ(t− s)g(s, x(s))ds, (1.4)


