Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 22 (2015) 199-222 Copyright ©2015 Watam Press

THE THEORY OF INFINITESIMAL DIFFEOMORPHISMS: AN INTRODUCTION

Ray Brown

The EEASI Corporation Houston, Texas, 77057 USA

Abstract. Biological and social sciences are hard pressed to apply the laws of Newton due to the multiplicity of parameters affecting the dynamics of such systems; hence the reliance on statistical methods. However, statistical methods do not predict cause-effect relationships. Rather, statistics provides correlations between dynamics of populations. There is a need for a "calculus" that can be used to predict causal relationships in biological and social systems that is based on the operative factors of these systems: complexity.

Complexity has been extensively analyzed by mathematicians and definitively explained by Smale [1,2] through the use of the horseshoe paradigm. The essence of this paradigm is that complexity arises, in its simplest form, from the operation of two dynamics: Stretching and folding. By devising a "calculus" based on stretching and folding we may be better positioned to predict causal relationships in the biological and social sciences. The value of a calculus of stretching and folding to biological and social systems to derive dynamical systems has been presented in [2,3,4,5,6,7]. The calculus of stretching and folding is mathematically formulated in the concept of an infinitesimal diffeomorphism (ID), [4]. In this paper I present a survey of the presently known properties of IDs.

Keywords. Chaos, Algebra, complexity, dynamical systems, dynamical synthesis. AMS (MOS) subject classification: 37D45.

1 Introduction: How does the study of IDs assist and advance the work of other scientific enterprises?

Infinitesimal diffeomorphisms (IDs) [4] are transformations on a manifold that can closely approximate the solution of a differential equation. However, they are a legitimate subject of analysis in their own right due to (1) their potential application in the biological and social sciences as seen in [7]; (2) their use in the numerical approximation of the solutions of ODEs; (3) their use as closed form diffeomorphisms having complex dynamics that are