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Abstract. In this paper, we define a new class of set-valued mappings in a Hilbert space,

called λ-hybrid. We prove some fixed point theorems for mappings in this class. Finally,

we establish weak convergence of modified SP-iteration to a fixed point of λ-hybrid set-

valued mappings in Hilbert spaces. Our results extend many known recent results in the

literature.
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1 Introduction

Let H be a real Hilbert space and D be a nonempty subset of H. Let
CB(D) and K(D) denote the families of nonempty closed bounded subsets
and nonempty compact subsets of D, respectively. The Hausdorff metric on
CB(D) is defined by

H(A,B) = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
for A,B ∈ CB(D),

where dist(x,D) = inf{∥x−y∥ : y ∈ D}. A single-valued mapping T : D → D
is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ D. A set-valued
mapping T : D → CB(D) is called nonexpansive if H(Tx, Ty) ≤ ∥x − y∥
for all x, y ∈ D. An element z ∈ D is called a fixed point of T : D → D
(respectively, T : D → CB(D)) if z = Tz (respectively, z ∈ Tz). The set of
fixed points of T is denoted by F (T ). A set-valued mapping T : D → CB(D)
is called quasi-nonexpansive if F (T ) ̸= ∅ and H(Tx, Tz) ≤ ∥x − z∥ for all


