Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 22 (2015) 73-79 Copyright ©2015 Watam Press

http://www.watam.org

GENERIC PERIODICALLY EXPANSIVE VOLUME-PRESERVING DIFFEOMORPHISMS

Manseob Lee

Department of Mathematics Mokwon University, Daejeon, 302-729, Korea

Abstract. We show that if C^1 -generically, a periodically expansive volume-preserving diffeomorphism is mixing Anosov.

Keywords. generic, volume-preserving, star condition, expansive, periodically expansive, homoclinic class, Anosov.

AMS (MOS) subject classification: 37C20, 37C29, 37D20.

1 Introduction

In smooth dynamical systems, the notion of expansivity is a main topic of the dynamical systems. It is very close to the stability theory. In fact, Mañé proved that if a diffeomorphism belongs to the C^1 -interior of the set of all expansive diffeomorphisms then it is quasi-Anosov. Here, we say that a diffeomorphism f is quasi-Anosov if for any $v \in TM(v \neq 0)$ the set $\{\|Df^n(v)\| : n \in \mathbb{Z}\}$ is unbounded. For that, in this paper, we study that a kind of expansivity and hyperbolicity under volume-preserving diffeomorphisms. Let us more precise. Let M be a d-dimensional $(d \ge 2)$ Riemannian closed and connected manifold and let $d(\cdot, \cdot)$ denotes the distance on M inherited by the Riemannian structure. We endow M with a volume-form (cf. [10]) and let μ denote the Lebesgue measure related to it. Let $\text{Diff}_{\mu}(M)$ denote the set of volume-preserving diffeomorphisms defined on M endowed with the C^1 Whitney topology. The Riemannian inner-product induces a norm $\|\cdot\|$ on the tangent bundle $T_x M$. We will use the usual uniform norm of a bounded linear map A given by $||A|| = \sup_{||v||=1} ||Av||$. Let $f \in \text{Diff}_{\mu}(M)$. We say that f is expansive if there is $\alpha > 0$ such that for any pair of distinct points $x, y \in M$, $d(f^n(x), f^n(y)) > \alpha$ for some $n \in \mathbb{Z}$. The number $\alpha > 0$ is called an *expansive constant* for f.

We say that a closed f-invariant set Λ is *hyperbolic* if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E_x^s}|| \leq C\lambda^n$$
 and $||D_x f^{-n}|_{E_x^u}|| \leq C\lambda^n$

for all $x \in \Lambda$ and $n \ge 0$. If $\Lambda = M$ then f is Anosov.