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Abstract. In this paper, we apply an extension of the Leggett-Williams fixed point

theorem to the second order difference equation ∆2u(k)+f(u(k+1)) = 0, k ∈ {0, 1, . . . , N},
satisfying the anti-periodic boundary conditions u(0) + u(N + 2) = 0, ∆u(0) + ∆u(N +

1) = 0. Two important results of this paper involve providing the Green’s function for

−∆2u(k) = 0 satisfying u(0) + u(N + 2) = 0, ∆u(0) + ∆u(N + 1) = 0 and showing this

Green’s function satisfies a concavity like property. An example is also given.
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1. Introduction

In this paper, we will apply an Avery, Anderson, and Henderson [2] fixed
point theorem that is an extension of the Leggett-Williams fixed point the-
orem [10]. Avery and others have been providing fixed point theorems that
relax some of the assumptions of the original Leggett-Williams fixed point
theorem; for examples, see [1, 3, 4, 5, 6].

Here, we consider the second order difference equation

(1.1) ∆2u(k) + f(u(k + 1)) = 0, k ∈ {0, 1, . . . , N},

satisfying anti-periodic boundary conditions

(1.2) u(0) + u(N + 2) = 0, ∆u(0) + ∆u(N + 1) = 0,

where f : R → R is continuous and ∆u(k) = u(k + 1) − u(k) is the forward
difference operator. We will show that if f satisfies certain conditions, then
(1.1), (1.2) has an antisymmetric solution in the sense that u(N + 2− k) =
−u(k).

While there has been much work done on ordinary differential equations
satisfying antiperiodic boundary values (for some examples, see [7, 8, 9]),


