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Abstract. We study nonlinear second-kind Volterra integral equations (VIEs) of Ham-

merstein type with convolution kernels where the nonlinear kernel function has a singular

point. Quenching occurs only when solutions approach the singularity point in finite time,

but this is not sufficient for the blow-up of the first derivative at that time. For weakly

singular convolution kernels, we give some sharp conditions for the quenching of the solu-

tion that are similar to the ones provided in our blow-up analysis for Hammerstein-type

VIEs (J. Integral Equations Appl. 24 (2012), 487-512). However, for smooth convolution

kernels we require new techniques for analyzing the blow-up of the first derivative of the

solution. Finally, we apply our quenching conditions to some VIEs that correspond to

applications modelled by parabolic differential equations that are driven by moving con-

centrated nonlinear sources, nonlocal effects or nonlinear boundary conditions.
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