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Abstract. In this paper, we introduce a new threshold model with poisson innovation:

Threshold Integer-Valued Moving Average model (TINMA). We derive the numerical char-

acteristics of TINMA(1) model. Stationary and ergodicity are also obtained. The methods

of estimation under analysis is Yule-Walker. Some simulation results illustrate the perfor-

mance of the proposed method.
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[8] U. Böckenholt. (2003). Analysing state dependences in emotional experiences by
dynamic count data models, Journal of Applied Statistics, 52: 213–226.

[9] Gourieroux C, Jasiak J. (2004).Heterogeneous INAR (1) model with application to
car insurance[J]. Insurance: Mathematics and Economics, 34(2): 177–192.

[10] Brännäs K, Shahiduzzaman Quoreshi A.M.M.(2010). Integer-valued moving aver-
age modelling of the number of transactions in stocks[J]. Applied Financial Eco-
nomics, 20(18): 1429–1440.

[11] Yu K., Shi D., and Peter X.K. Song. (2010). First-order random coefficient integer-
valued moving average process. Journal of Zhejiang University ( Science Edition )
, 37( 2): 153–159, 2010.

[12] Pedeli X, Karlis D. (2011). A bivariate INAR (1) process with application[J]. Sta-
tistical modelling, 11(4): 325–349.

[13] Yontay P, Weiß C H, Testik M C, et al. (2013). A Two-Sided Cumulative Sum
Chart for First-Order Integer-Valued Autoregressive Processes of Poisson Counts[J].
Quality and Reliability Engineering International, 29(1): 33–42.

[14] Liu T, Yuan X. (2013). Random rounded integer-valued autoregressive conditional
heteroskedastic process[J]. Statistical Papers, 54(3): 645–683.

[15] Thyregod P, Carstensen J, Madsen H, et al. (1999). Integer valued autoregressive
models for tipping bucket rainfall measurements[J]. Environmetrics, 10(4): 395–411.

[16] Monteiro M, Scotto M G, Pereira I. (2012). Integer-valued self-exciting thresh-
old autoregressive processes[J]. Communications in Statistics-Theory and Methods,
41(15): 2717–2737.
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