EXISTENCE OF HOMOCLINIC ORBITS OF A CLASS OF SECOND-ORDER DIFFERENTIAL DIFFERENCE EQUATIONS

Chengjun Guo ¹, Donal O'Regan ², Yuantong Xu ³ and Ravi P. Agarwal⁴

¹School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510006, P. R. China

²School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

 $^3{\rm Department}$ of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, P. R. China

⁴Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract. This paper is concerned with the existence of homoclinic orbits of the second order differential difference equations containing both advance and retardation

$$\ddot{z}(t) - K_z(t, z(t)) + f(t, z(t+\tau), z(t), z(t-\tau)) = h(t)$$
.

Using critical point theory we show a nontrivial homoclinic orbit is obtained as a limit of a sequence of periodic solutions of the equation.

Keywords. Homoclinic solutions; Differential difference equation; critical point theory.

AMS (MOS) subject classification: 34K13; 34K18; 58E50.

References

- [1] V. Coti Zelati, I. Ekeland and E. Sésé, A variational approach to homoclinic orbits in Hamil- tonian systems, *Math. Ann.* **228**, (1990) 133-160.
- [2] V.Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, A Second Course in Elementary Differential Equations, J. Amer. Math. Soc, 4, (1991) 693-727.
- [3] Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, *Nonlinear Anal*, **25**, (1995) 1095-1113.
- [4] Y. H. Ding and M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, J. Math. Anal. Appl, 189, (1995) 585-601.
- [5] Y. H. Ding and L. Jeanjean, Homoclinic orbits for a nonperiodic Hamiltonian system, J. Diff. Eqns, 237, (2007) 473-490.
- [6] C. J. Guo, D. O'Regan and R. Agarwal, Homoclinic orbits for singular second-order neutral differential equation, J. Math. Anal. Appl. 366, (2010) 550-560.
- [7] C. J. Guo, D. O'Regan and R. Agarwal, Existence of subharmonic solutions and homoclinic orbits for a class of high-order differential equations, *Applicable Analysis*, 9(7), (2011) 1169-1183.
- [8] C. J. Guo, D. O'Regan and R. Agarwal, Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods, Scientific Publications of the State University of Novi Pazarser. A: Appl. Math. Inform and Mech, 4(1), (2012) 1-15.
- [9] H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. 228, (1990) 483-503.
- [10] M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Diff. Eqns, 219, (2005) 375-389.
- [11] C. F. Kreiner and J. Zimmer, Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction, *Nonlinear Anal*, 70, (2009) 3146-3158.
- [12] L. S. Pontryagin, R. V. Gamkreledze and E. F. Mischenko, The mathematical theory of optimal processes, Interscience, New York, 1962.
- [13] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114A, (1990) 33-38.
- [14] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc. Providence, RI, 1986.
- [15] P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z, 206, (1991) 472-499.
- [16] A. Rustichini, Functional differential equations of mixed type: The linear autonomous case, J. Dynam. Diff. Eqns, 1, (1989) 121-143.
- [17] A. Rustichini, Hopf bifurcation for functional differential equations of mixed type, J. Dynam. Diff. Eqns, 1, (1989) 145-177.
- [18] L. S. Schulman, Correlating arrows of time Some, Phys. Rev, D7, (1973) 2868-2874.
- [19] L. S. Schulman, Some differential-difference equations containing both advance and retardation, J. Math Phys, 15, (1974) 295-298.
- [20] E. Sésé, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z, 209, (1993) 561-590.
- [21] D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal, 149, (1997) 266-275.

- [22] A. Szulkin and W. M. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal, 2001, (1990) 25-41.
- [23] J. A. Wheeler and P. R. Feynman, Classical electrodynamics in terms of direct interparticle action, Rev. Modern Phys, 21, (1949) 425-433.
- [24] J. H. Wu and X. F. Zou, Asymptotic and periodic boundary value problems of of mixed FDEs and wave solutions lattice differential equations, J. Diff. Eqns, 21, (1997) 315-357.
- [25] X. J. Xu, Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors, Discrete Contin. Dyn. Syst. Ser B3, 4, (2003) 643-654.
- [26] X. J. Xu, Homoclinic orbits for first order Hamiltonian systems with convex potentials, Advanced Nonlinear Studies, 6, (2006) 399-410.

Received September 2013; revised November 2013

 $http://monotone.uwaterloo.ca/{\sim}journal/$