
Dynamics of Continuous, Discrete and Impulsive Systems
Series A: Mathematical Analysis 20 (2013) 641-656
Copyright c⃝2013 Watam Press http://www.watam.org

ON WEAKLY NONLINEAR BOUNDARY VALUE
PROBLEMS WITH IMPULSES

Daniel Maroncelli 1 and Jesús Rodŕıguez 2
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Abstract. In this paper we discuss the existence of solutions to weakly nonlinear boundary
value problems of the form

x′(t) = A(t)x(t) + g(t) + εf(t, x(t)), t ∈ [0, 1] \ {t1, t2, · · · , tk}
x(t+i )− x(t−i ) = wi, i = 1, ..., k

subject to boundary conditions

Bx(0) +Dx(1) = 0.

We present a qualitative analysis of the dependence of solutions on the “small” pa-

rameter ε. Emphasis will be placed on the resonant case.
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1 Introduction

In the following we will be analyzing problems of the form

x′(t) = A(t)x(t) + g(t) + εf(t, x(t)), t ∈ [0, 1] \ {t1, t2, · · · , tk} (1)

x(t+i )− x(t−i ) = wi, i = 1, ..., k (2)

subject to boundary conditions

Bx(0) +Dx(1) = 0. (3)
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[14] Jesús Rodŕıguez and Padraic Taylor, Multipoint boundary value problems for nonlin-
ear ordinary differential equations, Nonlinear Anal. 68 (2008), 3465–3474.

[15] A. M. Samoilenko and N. A. Perestyuk, Impulsive differential equations, World Sci-
entific, Singapore, 1995.

[16] Wayne Spealman and Daniel Sweet, The alternative method for solutions in the kernel
of a bounded linear functional, J. Differ Equ. 37 (1980), 297–302.

Received May 2012; revised October 2013.

email: journal@monotone.uwaterloo.ca
http://monotone.uwaterloo.ca/∼journal/




